【題目】從某校參加高二年級學(xué)業(yè)水平考試模擬考試的學(xué)生中抽取60名學(xué)生,將其數(shù)學(xué)成績分成6段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]后,畫出如圖的頻率分布直方圖.根據(jù)圖形信息,解答下列問題:
(1)估計這次考試成績的眾數(shù),中位數(shù),平均數(shù);
(2)估計這次考試成績的及格率(60分及其以上為及格).
【答案】(1)見解析;(2)0.85.
【解析】試題分析:(1)平均數(shù)是頻率分布直方圖的“重心”,等于頻率分布直方圖中每個小矩形的面積乘以小矩形底邊中點的橫坐標(biāo)之和;在直方圖中,高度最高的小矩形的中間值的橫坐標(biāo)即為眾數(shù);中位數(shù)是這個數(shù)兩側(cè)的小矩形的面積分別為0.5.(2)由頻率分布直方圖,求出不及格率,即可求得這次考試成績的及格率;
解析:
(1)由眾數(shù)概念知,眾數(shù)是出現(xiàn)次數(shù)最多的,
在直方圖中,高度最高的小矩形的中間值的橫坐標(biāo)即為眾數(shù),
由頻率分布直方圖知,這次測試數(shù)學(xué)成績的眾數(shù)為85
這次考試成績的中位數(shù)為則有:
這次考試成績的平均數(shù)為:
45×(0.005×10)+55×(0.01×10)+65×(0.025×10)+75×(0.025×10)+85×(0.03×10)+95×(0.005×10)=73;
(2)這次考試成績的及格率1﹣(0.005×10﹣0.01×10)=0.85
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的首項為,前項和為與之間滿足 ,
(Ⅰ)求證:數(shù)列是等差數(shù)列;
(Ⅱ)求數(shù)列的通項公式;
(Ⅲ)設(shè)存在正整數(shù),使對一切都成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)若對,都有成立,求的取值范圍;
(3)當(dāng)時,求在上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)擬建造如圖所示的容器(不計厚度,長度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設(shè)計要求容器的容積為立方米,且l≥2r.假設(shè)該容器的建造費用僅與其表面積有關(guān),已知圓柱形部分每平方米建造費用為3千元,半球形部分每平方米建造費用為c(c>3)千元.設(shè)該容器的建造費用為y千元.
①寫出y關(guān)于r的函數(shù)表達式,并求該函數(shù)的定義域;
②求該容器的建造費用最小時的r.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】;~塘是某地一種獨具地方特色的農(nóng)業(yè)生產(chǎn)形式,某研究單位打算開發(fā)一個;~塘項目,該項目準(zhǔn)備購置一塊平方米的矩形地塊,中間挖成三個矩形池塘養(yǎng)魚,挖出的泥土堆在池塘四周形成基圍(陰影部分所示)種植桑樹,池塘周圍的基圍寬均為米,如圖,設(shè)池塘所占總面積為平方米.
(Ⅰ)試用表示.
(Ⅱ)當(dāng)取何值時,才能使得最大?并求出的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,側(cè)棱底面, 為棱中點. , , .
(I)求證: 平面.
(II)求證: 平面.
(III)在棱的上是否存在點,使得平面平面?如果存在,求此時的值;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一名學(xué)生騎自行車上學(xué),從他家到學(xué)校的途中有個交通崗,假設(shè)他在各個交通崗遇到紅燈的事件是相互獨立的,并且概率都是.求:
()這名學(xué)生在途中遇到次紅燈次數(shù)的概率.
()這名學(xué)生在首次停車前經(jīng)過了個路口的概率.
()這名學(xué)生至少遇到一次紅燈的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com