某類產(chǎn)品按工藝共分10個(gè)檔次,最低檔次產(chǎn)品每件利潤(rùn)為8元.每提高一個(gè)檔次,每件利潤(rùn)增加2元.用同樣工時(shí),可以生產(chǎn)最低檔產(chǎn)品60件,每提高一個(gè)檔次將少生產(chǎn)3件產(chǎn)品.則獲得利潤(rùn)最大時(shí)生產(chǎn)產(chǎn)品的檔次是( )
A.第7檔次
B.第8檔次
C.第9檔次
D.第10檔次
【答案】分析:檔次提高時(shí),帶來每件利潤(rùn)的提高,產(chǎn)量下降,第k檔次時(shí),每件利潤(rùn)為[8+2(k-1)],產(chǎn)量為[60-3(k-1)],根據(jù):利潤(rùn)=每件利潤(rùn)×產(chǎn)量,列函數(shù)式,利用配方法求函數(shù)的最值,即可得到結(jié)論.
解答:解:由題意,第k檔次時(shí),每天可獲利潤(rùn)為:y=[8+2(k-1)][60-3(k-1)]=-6k2+108k+378(1≤x≤10)
配方可得y=-6(k-9)2+864,
∴k=9時(shí),獲得利潤(rùn)最大
故選C.
點(diǎn)評(píng):本題考查二次函數(shù),考查利用數(shù)學(xué)知識(shí)解決實(shí)際問題.檔次提高時(shí),帶來每件利潤(rùn)的提高,產(chǎn)量下降,列函數(shù)式時(shí),要注意這“一增一減”.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某類產(chǎn)品按工藝共分10個(gè)檔次,最低檔次產(chǎn)品每件利潤(rùn)為8元.每提高一個(gè)檔次,每件利潤(rùn)增加2元.用同樣工時(shí),可以生產(chǎn)最低檔產(chǎn)品60件,每提高一個(gè)檔次將少生產(chǎn)3件產(chǎn)品.則獲得利潤(rùn)最大時(shí)生產(chǎn)產(chǎn)品的檔次是
9檔次
9檔次

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•昌平區(qū)一模)某類產(chǎn)品按工藝共分10個(gè)檔次,最低檔次產(chǎn)品每件利潤(rùn)為8元.每提高一個(gè)檔次,每件利潤(rùn)增加2元.用同樣工時(shí),可以生產(chǎn)最低檔產(chǎn)品60件,每提高一個(gè)檔次將少生產(chǎn)3件產(chǎn)品.則獲得利潤(rùn)最大時(shí)生產(chǎn)產(chǎn)品的檔次是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某類產(chǎn)品按工藝共分10個(gè)檔次,最低檔次產(chǎn)品每件利潤(rùn)為8元.每提高一個(gè)檔次每件利潤(rùn)增加4元.一天的工時(shí)可以生產(chǎn)最低檔產(chǎn)品60件,每提高一個(gè)檔次將減少6件產(chǎn)品,求生產(chǎn)何種檔次的產(chǎn)品時(shí)獲得利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年陜西省寶雞市金臺(tái)區(qū)高一(上)11月質(zhì)量檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題

某類產(chǎn)品按工藝共分10個(gè)檔次,最低檔次產(chǎn)品每件利潤(rùn)為8元.每提高一個(gè)檔次每件利潤(rùn)增加4元.一天的工時(shí)可以生產(chǎn)最低檔產(chǎn)品60件,每提高一個(gè)檔次將減少6件產(chǎn)品,求生產(chǎn)何種檔次的產(chǎn)品時(shí)獲得利潤(rùn)最大.

查看答案和解析>>

同步練習(xí)冊(cè)答案