4.設數(shù)列{an}的前n項和為Sn.已知a1=1,an+1=2Sn+1,n∈N*
(1)寫出a2,a3的值,并求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足b1=0,bn-bn-1=log3an(n≥2),求數(shù)列{bn}的通項公式;
(3)記Tn為數(shù)列{nan}的前n項和,求Tn

分析 (1)由數(shù)列的通項和前n項和的關系,結合等比數(shù)列的定義和通項公式,即可得到所求;
(2)bn-bn-1=log33n-1=n-1(n≥2),由數(shù)列的恒等式bn=b1+(b2-b1)+(b3-b2)+…(bn-bn-1),由等差數(shù)列的求和公式,計算即可得到所求;
(3)nan=n•3n-1,運用數(shù)列的求和方法:錯位相減法,結合等比數(shù)列的求和公式,化簡即可得到所求和.

解答 解:(1)an+1=2Sn+1,可得a2=2a1+1=3,
a3=2(a1+a2)+1=2×(1+3)+1=9,
當n>1時,an=2Sn-1+1,
相減可得an+1-an=2(Sn-Sn-1)=2an,
即an+1=3an,因為$\frac{{a}_{2}}{{a}_{1}}$=3,則an+1=3an
所以{an}是以1為首項,3為公比的等比數(shù)列,
則an=3n-1
(2)數(shù)列{bn}滿足b1=0,bn-bn-1=log3an(n≥2),
即有bn-bn-1=log33n-1=n-1(n≥2),
bn=b1+(b2-b1)+(b3-b2)+…(bn-bn-1
=0+1+2+…+(n-1)=$\frac{n(n-1)}{2}$;
顯然b1=0符合上式,所以bn=$\frac{n(n-1)}{2}$;
(3)nan=n•3n-1
前n項和Tn=1•30+2•31+3•32+…+n•3n-1,
3Tn=1•31+2•32+3•33+…+n•3n,
兩式相減可得,-2Tn=1+31+32+…+3n-1-n•3n
=$\frac{1-{3}^{n}}{1-3}$-n•3n,
化簡可得,Tn=$\frac{(2n-1)•{3}^{n}}{4}$+$\frac{1}{4}$.

點評 本題考查數(shù)列的通項的求法,注意運用數(shù)列的通項和前n項和的關系,以及數(shù)列的恒等式,考查數(shù)列的求和方法:錯位相減法,考查運算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,已知三棱柱ABC-A1B1C1的側棱與底面垂直,AA1=AB=AC=1,AB⊥AC,M,N分別是CC1,BC的中點,點p在直線A1B1上運動,且$\overrightarrow{{A}_{1}P}$=$λ\overrightarrow{{{A}_{1}B}_{1}}$(λ∈[0,1])
(1)證明:無論λ取何值,總有AM⊥PM;
(2)當λ取何值時,直線PN與平面ABC所成的角θ最小?并指出該角取最小值時點P所在的位置;
(3)是否存在點P,使得平面PMN與平面ABC所成的二面角為30°?若存在,試確定點P的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知函數(shù)f(x)=4sin2(x+$\frac{π}{4}$)-2$\sqrt{3}$cos2x+1,且給定條件p:$\frac{π}{4}$≤x≤$\frac{π}{2}$,又給定條件q:|f(x)-m|<2,且p是q的充分條件,則實數(shù)m的取值范圍是( 。
A.(-2,2)B.(5,7)C.(3,5)D.(1,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設f(x)是定義在R上的偶函數(shù),且f(2+x)=f(2-x),當x∈[0,2]時,f(x)=($\sqrt{2}$)x-1,若關于x的方程f(x)-loga(x+2)=0(a>0且a≠1)在區(qū)間(-2,6)內(nèi)恰有4個不等的實數(shù)根,則實數(shù)a的取值范圍是( 。
A.($\frac{1}{4}$,1)B.(1,4)C.(1,8)D.(8,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.不等式|x+1|-|x-3|≥0的解集是( 。
A.[1,+∞)B.(-∞,-1]∪[1,+∞)C.[-1,3]D.(-∞,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知全集U=R,集合A={x|-1≤x≤3},B={x|x<2},則A∩B=[-1,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知$a={(0.3)^{\sqrt{3}}},b={log_{\sqrt{3}}}0.3,c={(\sqrt{3})^{0.3}}$,則a,b,c三個數(shù)用“<”連接表示為b<a<c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,△ABC是邊長為1正三角形,CD=DA=$\frac{{\sqrt{3}}}{3}$,AC與BD的交點為M,點N在線段PB上,且PN=$\frac{1}{2}$.若二面角A-BC-P的正切值為2$\sqrt{2}$.
(I)求證:MN∥平面PDC;
(Ⅱ)求平面DCP與平面ABP所成的銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在正項數(shù)列{an}中,a1=$\frac{1}{3}$,an+1=an+($\frac{{a}_{n}}{n}$)2(n∈N*
(1)判斷數(shù)列{an}的單調(diào)性,并證明你的結論;
(2)求證:對n∈N*都有:$\frac{1}{3}$≤an<1.

查看答案和解析>>

同步練習冊答案