【題目】如圖,三棱柱的所有棱長都是2,平面ABC,D,E分別是AC,的中點(diǎn).
求證:平面;
求二面角的余弦值.
【答案】(1)見解析; (2).
【解析】
(1)根據(jù)線面垂直和面面垂直判定和性質(zhì),證得,通過三角形全等,證得,再根據(jù)線面垂直的判定定理,證得平面;
(2) 建立空間直角坐標(biāo)系,向量法求二面角的余弦值.
(1)∵,D是AC的中點(diǎn),∴,
∵平面ABC,∴平面平面ABC,
∴平面,∴.
又∵在正方形中,D,E分別是AC,的中點(diǎn),易證得∴△A1AD≌△ACE
∴∠A1DA=∠AEC, ∵∠AEC+∠CAE=90°,∴∠A1DA+∠CAE=90° ,即.
又,∴平面.
(3)取中點(diǎn)F,以DF,DA,DB為x,y,z軸建立空間直角坐標(biāo)系,,,,,,,,,
設(shè)平面DBE的一個法向量為,則,
令,則,
設(shè)平面的一個法向量為,則,
令,則,
設(shè)二面角的平面角為,觀察可知為鈍角,
,
∴,故二面角的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點(diǎn)處的切線與軸正半軸有公共點(diǎn),求的取值范圍;
(2)求證:時,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年年月某市郵政快遞業(yè)務(wù)量完成件數(shù)較2017年月月同比增長,如圖為該市2017年月郵政快遞業(yè)務(wù)量柱狀圖及2018年月郵政快遞業(yè)務(wù)量餅圖,根據(jù)統(tǒng)計圖,解決下列問題
年月該市郵政快遞同城業(yè)務(wù)量完成件數(shù)與2017年月相比是有所增大還是有所減少,并計算,2018年月該市郵政快遞國際及港澳臺業(yè)務(wù)量同比增長率;
若年平均每件快遞的盈利如表所示:
快遞類型 | 同城 | 異地 | 國際及港澳臺 |
盈利元件 | 5 | 25 |
估計該市郵政快遞在2018年月的盈利是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn)是拋物線上異于原點(diǎn)的一點(diǎn),過點(diǎn)作斜率為、的兩條直線分別交于、兩點(diǎn)(、、三點(diǎn)互不相同).
(1)已知點(diǎn),求的最小值;
(2)若,直線的斜率是,求的值;
(3)若,當(dāng)時,點(diǎn)的縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的首項為,設(shè)其前n項和為,且對有,.
(1)設(shè),求證:數(shù)列為等差數(shù)列;
(2)求數(shù)列的通項公式;
(3)是否存在正整數(shù)m,k,使得,,成等差數(shù)列?若存在,求出m,k的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱錐O﹣ABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=1,OB=OC=2,E是OC的中點(diǎn).
(1)求異面直線BE與AC所成角的余弦值;
(2)求直線BE和平面ABC的所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】哥德巴赫猜想是“每個大于2的偶數(shù)可以表示為兩個素數(shù)的和”,如,在不超過13的素數(shù)中,隨機(jī)選取兩個不同的數(shù),其和為偶數(shù)的概率是________(用分?jǐn)?shù)表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從1至9這9個自然數(shù)中任取兩個:
恰有一個偶數(shù)和恰有一個奇數(shù);至少有一個是奇數(shù)和兩個數(shù)都是奇數(shù);
至多有一個奇數(shù)和兩個數(shù)都是奇數(shù);至少有一個奇數(shù)和至少有一個偶數(shù).
在上述事件中,是對立事件的是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐中,平面,,,,為的中點(diǎn).
(1)證明:平面;
(2)設(shè)二面角為,,,求四棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com