【題目】已知函數(shù)f(x)=x2+bx+c,其圖象與y軸的交點(diǎn)為(0,1),且滿足f(1﹣x)=f(1+x).
(1)求f(x);
(2)設(shè) ,m>0,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf(x),若對于一切x∈[0,1],不等式h(x+1﹣t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.
【答案】(1)f(x)=x2﹣2x+1;(2)
(3)實(shí)數(shù)t的取值范圍是﹣1<t<0.
【解析】試題分析:(1)根據(jù)截距和對稱軸得出b,c的值,得出f(x)的解析式;
(2)作出g(x)的函數(shù)圖象,根據(jù)圖象得出結(jié)論;
(3)化簡h(x)解析式,根據(jù)函數(shù)單調(diào)性得出關(guān)于t的恒等式,從而求出t的范圍.
試題解析:
(1)∵圖象與y軸的交點(diǎn)為(0,1),∴c=1,
∵f(1﹣x)=f(1+x),
∴函數(shù)f(x)的圖象關(guān)于直線x=1對稱,∴b=﹣2,
∴f(x)=x2﹣2x+1,
(2)∵f(x)=x2﹣2x+1=(x﹣1)2,
∴,
作出g(x)的函數(shù)圖象如圖所示:
當(dāng)0<m≤時(shí),gmax(x)=g(m)=m﹣m2,
當(dāng)<m≤時(shí),gmax(x)=g()=,
當(dāng)m>時(shí),gmax(x)=g(m)=m2﹣m,
綜上, .
(3)h(x)=2ln|x﹣1|,
所以h(x+1﹣t)=2ln|x﹣t|,h(2x+2)=2ln|2x+1|,
當(dāng)x∈[0,1]時(shí),|2x+1|=2x+1,
所以不等式等價(jià)于0<|x﹣t|<2x+1恒成立,
解得﹣x﹣1<t<3x+1,且x≠t,
由x∈[0,1],得﹣x﹣1∈[﹣2,﹣1],3x+1∈[1,4],
所以﹣1<t<1,
又x≠t,∵t[0,1],
∴實(shí)數(shù)t的取值范圍是﹣1<t<0.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三棱柱中,側(cè)棱, , 分別為棱的中點(diǎn), 分別為線段和的中點(diǎn).
(1)求證:直線平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把是BC上的△ABD折起,使∠BDC=90°.
(Ⅰ)證明:平面ADB⊥平面BDC;
(Ⅱ)設(shè)BD=1,求三棱錐D﹣ABC的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)對一切x,y∈R都有f(x+y)﹣f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(0)的值;
(2)求f(x)的解析式;
(3)已知a∈R,設(shè)P:當(dāng) 時(shí),不等式f(x)+3<2x+a恒成立,Q:當(dāng)x∈[﹣2,2]時(shí),g(x)=f(x)﹣ax是單調(diào)函數(shù),如果記使P成立的實(shí)數(shù)a的取值的集合為A,使Q成立的實(shí)數(shù)a的取值的集合為B,求A∩RB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在和處取得極值.
(1)求f(x)的表達(dá)式和極值.
(2)若f(x)在區(qū)間[m,m+4]上是單調(diào)函數(shù),試求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若命題p:曲線 =1為雙曲線,命題q:函數(shù)f(x)=(4﹣a)x在R上是增函數(shù),且p∨q為真命題,p∧q為假命題,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)滿足以下條件:①定義在正實(shí)數(shù)集上;②f( )=2;③對任意實(shí)數(shù)t,都有f(xt)=tf(x)(x∈R+).
(1)求f(1),f( )的值;
(2)求證:對于任意x,y∈R+ , 都有f(xy)=f(x)+f(y);
(3)若不等式f(loga(x﹣3a)﹣1)﹣f(﹣ )≥﹣4對x∈[a+2,a+ ]恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a∈R,設(shè)命題p:指數(shù)函數(shù)y=ax(a>0且a≠1)在R上單調(diào)遞增;命題q:函數(shù)y=ln(ax2﹣ax+1)的定義域?yàn)镽,若“p且q”為假,“p或q”為真,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com