精英家教網 > 高中數學 > 題目詳情
7.已知函數f(x)=ax-lnx,x∈(0,e],g(x)=$\frac{lnx}{x}$,其中e是自然常數,a∈R.
(1)當a=1時,求f(x)的極值,并證明f(x)>g(x)+$\frac{1}{2}$,x∈(0,e]恒成立;
(2)是否存在實數a,使f(x)的最小值為3?若存在,求出a的值;若不存在,請說明理由.

分析 (1)求出函數的導數,由x∈(0,e]和導數的性質能求出f(x)的單調區(qū)間、極值,f(x)=x-lnx在(0,e]上的最小值為1,由此能夠證明f(x)>g(x)+$\frac{1}{2}$.
(2)求出函數f(x)的導數,由此進行分類討論能推導出存在a=e2

解答 解:(1)f′(x)=1-$\frac{1}{x}$=$\frac{x-1}{x}$,
∵x∈(0,e],
由f′(x)=$\frac{x-1}{x}$>0,得1<x<e,
∴增區(qū)間(1,e).
由f′(x)<0,得0<x<1.
∴減區(qū)間(0,1).
故減區(qū)間(0,1);增區(qū)間(1,e).
所以,f(x)極小值=f(1)=1.
令 F(x)=f(x)-g(x)=x-lnx-$\frac{lnx}{x}$-$\frac{1}{2}$,
求導F′(x)=1-$\frac{1}{x}$-$\frac{1-lnx}{{x}^{2}}$=$\frac{{x}^{2}-x+lnx-1}{{x}^{2}}$,
令H(x)=x2-x+lnx-1
則H′(x)=2x-1+$\frac{1}{x}$=$\frac{1}{x}$(2x2-x+1)>0
易知H(1)=-1,
故當0<x<1時,H(x)<0,即F′(x)<0
1<x<e時,H(x)>0,即F′(x)>0
故當x=1時F(x)有最小值為F(1)=$\frac{1}{2}$>0
故對x∈(0,e]有F(x)>0,
∴f(x)>g(x)+$\frac{1}{2}$.
(2)f′(x)=a-$\frac{1}{x}$=$\frac{ax-1}{x}$,
①當a≤0時,f(x)在(0,e)上是減函數,
∴ae-1=3,a=$\frac{4}{e}$>0,(舍去).
②當0<a<$\frac{1}{e}$時,f(x)=$\frac{1}{e}$,f(x)在(0,e]上是減函數,
∴ae-1=3,a=$\frac{4}{e}$>$\frac{1}{e}$,(舍去).
③當a≥$\frac{1}{e}$時,f(x)在(0,$\frac{1}{a}$]上是減函數,($\frac{1}{a}$,e)是增函數,
∴a•$\frac{1}{a}$-ln$\frac{1}{a}$=3,a=e2,
所以存在a=e2

點評 本題考查利用導數求閉區(qū)間上函數的最值的應用,綜合性強,難度大.解題時要認真審題,注意挖掘題設中的隱含條件,合理地進行等價轉化.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

17.設集合A={x|x2-2x-3<0},B={x|x>0},則A∪B=(  )
A.(-1,+∞)B.(-∞,3)C.(0,3)D.(-1,3)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.已知函數$f(x)=2lnx(\frac{1}{e}≤x≤{e^2})$,g(x)=mx+2,若f(x)與g(x)的圖象上存在關于直線y=1對稱的點,則實數m的取值范圍是(  )
A.$[-\frac{2}{3},-\frac{4}{e^2}]$B.$[-\frac{2}{e},2e]$C.$[-\frac{4}{e^2},2e]$D.$[-\frac{4}{e^2},+∞]$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

15.已知函數f(x)=xsinx,則f(x)在x=$\frac{π}{2}$處的導數為1.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.函數y=2x3-3x2+a的極小值是5,那么實數a等于(  )
A.6B.0C.5D.1

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

12.如圖1,已知梯形ABCD中,BC∥AD,BC=BE=1,AD=4,E為AD的中點,BE⊥AD.將△ABE沿BE折起到△PBE的位置,使∠PED=120°,如圖2.M是棱PB上的一點(M不與P,B重合),平面DEM交PC于N.

(Ⅰ)求證:DE∥MN;
(Ⅱ)求平面PBE與平面PCD所成銳二面角的余弦值;
(Ⅲ)是否存在點M,使得平面MNDE⊥平面PCD?若存在,求出$\frac{PM}{PB}$的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.已知函數f(x)=ax2-|x-1|+2a(a∈R).
(1)當a=$\frac{1}{2}$時,解不等式f(x)≥0;
(2)若f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.已知函數f(x)(sinx+cosx)2+2cos2x-2
(1)求函數f(x)的最小正周期T;
(2)求f(x)的最大值,并指出取得最大值時x取值集合;
(3)當x∈[$\frac{π}{4}$,$\frac{3π}{4}$]時,求函數f(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.已知函數f(x)=2x+1,數列{an}滿足a1=1,${a_{n+1}}=f({a_n})-1(n∈{N^*})$,數列{bn}為等差數列,首項b1=1,公差為2.
(1)求數列{an}、{bn}的通項公式;
(2)令${c_n}={a_n}+{b_n}(n∈{N^*})$,求{cn}的前n項和Tn

查看答案和解析>>

同步練習冊答案