已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點(diǎn)為F(c,0),直線x=
a2
c
與一條漸近線交于點(diǎn)A,△OAF的面積為
a2
2
(O為原點(diǎn)),則拋物線y2=
4a
b
x的準(zhǔn)線方程為( 。
A、x=-1B、x=-2
C、y=-1D、y=-2
考點(diǎn):拋物線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:利用雙曲線方程求得其漸近線方程,與直線方程聯(lián)立求得點(diǎn)A的坐標(biāo),進(jìn)而利用△OAF的面積求得a和b的關(guān)系式,帶入拋物線方程,求得拋物線方程,最后利用拋物線的性質(zhì)求得準(zhǔn)線方程.
解答: 解:依題意知,雙曲線漸近線方程為:y=±
b
a
,
根據(jù)對稱性可知,A點(diǎn)在x軸上方和下方的解是一樣的,
故看A在x軸上方時,聯(lián)立方程,
y=
b
a
x
x=
a2
c
,求得y=
ab
c

∴S△OAF=
1
2
•C•
ab
c
=
a2
2
,
∴a=b,
∴拋物線的方程為y2=4x,
即2p=4,p=2
∴拋物線的準(zhǔn)線方程為x=-1,
故選:A.
點(diǎn)評:本題主要考查了拋物線和雙曲線的基本性質(zhì).解題的關(guān)鍵是求得a和b的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn(n∈N*),且an=2n+λ,若數(shù)列{Sn}為遞增數(shù)列,則實(shí)數(shù)λ的取值范圍為( 。
A、[-3,+∞)
B、(-3,+∞)
C、(-4,+∞)
D、[-4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖正方體ABCD-A1B1C1D1的棱長為1,點(diǎn)E在線段BB1和線段A1B1上移動,∠EAB=θ,θ∈(0,
π
2
),過直線AE,AD的平面ADFE將正方體分成兩部分,記棱BC所在部分的體積為V(θ),則函數(shù)V=V(θ),θ∈(0,
π
2
)的大致圖象是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sinωx(ω>0)的圖象在y軸右邊的第一條對稱軸的方程x=1,則ω=( 。
A、
π
4
B、
π
2
C、π
D、2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)平面內(nèi),復(fù)數(shù)
2
1-i
-i3對應(yīng)的點(diǎn)位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個空間幾何體的三視圖如圖所示,其中俯視圖是邊長為6的正三角形,若這個空間幾何體存在唯一的一個內(nèi)切球(與該幾何體各個面都相切),則這個幾何體的全面積是( 。
A、18
3
B、36
3
C、45
3
D、54
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+bx+c(a,b,c∈R,a<0)對于一切實(shí)數(shù)x都有f(1-x)=f(1+x),而且f(-1)<0,f(0)>0,則有( 。
A、a+b+c<0
B、c<2b
C、abc>0
D、b<a+c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱椎P-ABC中,PA⊥平面ABC,AC⊥BC,D為側(cè)棱PC上的一點(diǎn),它的正視圖和側(cè)視圖如圖所示,則下列命題正確的是( 。
A、AD⊥平面PBC且三棱椎D-ABC的體積為
8
3
B、BD⊥平面PAC且三棱椎D-ABC的體積為
8
3
C、AD⊥平面PBC且三棱椎D-ABC的體積為
16
3
D、BD⊥平面PAC且三棱椎D-ABC的體積為
16
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>1,函數(shù)f(x)的圖象與函數(shù)y=4-a|x-2|-2•ax-2的圖象關(guān)于點(diǎn)A(1,2)對稱.
(1)求函數(shù)f(x)的解析式;
(2)若關(guān)于x的方程f(x)=m有兩個不同的正數(shù)解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案