A. | y=($\sqrt{x-1}$)2 | B. | y=$\root{3}{(x-1)^{3}}$ | C. | y=$\sqrt{(x-1)^{2}}$ | D. | y=$\frac{(x-1)^{2}}{x-1}$ |
分析 根據(jù)兩個(gè)函數(shù)的定義域相同,對(duì)應(yīng)關(guān)系也相同,即可它們是相等函數(shù);
解答 解:對(duì)于A,函數(shù)y=${(\sqrt{x-1})}^{2}$=x-1(x≥1),與函數(shù)y=x-1(x∈R)的定義域不同,所以不是相等函數(shù);
對(duì)于B,函數(shù)y=$\root{3}{{(x-1)}^{3}}$=x-1(x∈R),與函數(shù)y=x-1(x∈R)的定義域相同,對(duì)應(yīng)關(guān)系也相同,所以是相等函數(shù);
對(duì)于C,函數(shù)y=$\sqrt{{(x-1)}^{2}}$=|x-1|(x∈R),與函數(shù)y=x-1(x∈R)的對(duì)應(yīng)關(guān)系不同,所以不是相等函數(shù);
對(duì)于D,函數(shù)y=$\frac{{(x-1)}^{2}}{x-1}$=x-1(x≠1),與函數(shù)y=x-1(x∈R)的定義域不同,所以不是相等函數(shù).
故選:B.
點(diǎn)評(píng) 本題考查了判斷兩個(gè)函數(shù)是否為同一函數(shù)的應(yīng)用問(wèn)題,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | M∪N | B. | M∩N | C. | (∁IM)∪N | D. | (∁IM)∩N |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | -1 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 既不充分也不必要條件 | B. | 必要而不充分條件 | ||
C. | 充分必要條件 | D. | 充分而不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{4}{3}$ | B. | $\frac{4}{3}$ | C. | $-\frac{3}{4}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com