【題目】已知函數(shù).
()若曲線與直線相切于點,求點的坐標.
()令,當時,求的單調(diào)區(qū)間.
()當,證明:當, .
【答案】()()單調(diào)增區(qū)間為單調(diào)減區(qū)間為()見解析
【解析】試題分析:
(1)設(shè)點,根據(jù)可解得,從而可得點的坐標.(2)由題意得,又, ,故.從而根據(jù)的符號可得函數(shù)的單調(diào)區(qū)間。(3)結(jié)合(2),令,分①和②兩種情況都可證得當時, .從而可得,即不等式成立。
試題解析:
()設(shè)點,
由,得,
由題意得,解得,
∴,
∴點的坐標為.
()由題意得,
∴,
∵, ,
∴.
由,解得,
由,解得.
∴函數(shù)的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為.
()由(2)得
設(shè),則,
由,得,
①當時,
則,
∴在單調(diào)遞增,
∴,
②當時,
令,得,
當時, , 單調(diào)遞減,
時, , 單調(diào)遞增。
∴,
綜上當時, .
∴在單調(diào)遞減,在單調(diào)遞增.
∴當極小值,也為最小值,且。
∴在成立.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當時,求函數(shù)的單調(diào)區(qū)間和極值;
(Ⅱ)求證:當時,關(guān)于的不等式在區(qū)間上無解.(其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)討論的單調(diào)性;
(2)當時,若函數(shù)的圖象全部在直線的下方,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“拋階磚”是國外游樂場的典型游戲之一.參與者只需將手上的“金幣”(設(shè)“金幣”的半徑為1)拋向離身邊若干距離的階磚平面上,拋出的“金幣”若恰好落在任何一個階磚(邊長為2.1的正方形)的范圍內(nèi)(不與階磚相連的線重疊),便可獲大獎.不少人被高額獎金所吸引,紛紛參與此游戲,但很少有人得到獎品,請用所學(xué)的概率知識解釋這是為什么.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對某校高三年級學(xué)生參加社區(qū)服務(wù)次數(shù)進行統(tǒng)計,隨機抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖.
分組 | 頻數(shù) | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | m | p |
[25,30] | 2 | 0.05 |
合計 | M | 1 |
(1)求出表中M,p及圖中a的值;
(2)若該校高三學(xué)生有240人,試估計該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù);
(3)估計這次學(xué)生參加社區(qū)服務(wù)人數(shù)的眾數(shù)、中位數(shù)以及平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司的底薪80元,每單抽成4元;乙公司無底薪,40單以內(nèi)(含40單)的部分每單抽成6元,超出40單的部分每單抽成7元,假設(shè)同一公司送餐員一天的送餐單數(shù)相同,現(xiàn)從兩家公司各隨機抽取一名送餐員,并分別記錄其50天的送餐單數(shù),得到如下頻數(shù)表:
甲公司送餐員送餐單數(shù)頻數(shù)表
送餐單數(shù) | 38 | 39 | 40 | 41 | 42 |
天數(shù) | 10 | 15 | 10 | 10 | 5 |
乙公司送餐員送餐單數(shù)頻數(shù)表
送餐單數(shù) | 38 | 39 | 40 | 41 | 42 |
天數(shù) | 5 | 10 | 10 | 20 | 5 |
(1)現(xiàn)從甲公司記錄的50天中隨機抽取3天,求這3天送餐單數(shù)都不小于40的概率;
(2)若將頻率視為概率,回答下列兩個問題:
①記乙公司送餐員日工資為(單位:元),求的分布列和數(shù)學(xué)期望;
②小王打算到甲、乙兩家公司中的一家應(yīng)聘送餐員,如果僅從日工資的角度考慮,請利用所學(xué)的統(tǒng)計學(xué)知識為小王作出選擇,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)舉行一次“環(huán)保知識競賽”,全校學(xué)生參加了這次競賽.為了解本次競賽成績情況,從中抽取了部分學(xué)生的成績(得分取正整數(shù),滿分為分)作為樣本進行統(tǒng)計,請根據(jù)下面尚未完成并有局部污損的樣本的頻率分布表和頻率分布直方圖(如圖所示)解決下列問題:
(Ⅰ)寫出, , , 的值.
(Ⅱ)在選取的樣本中,從競賽成績是分以上(含分)的同學(xué)中隨機抽取名同學(xué)到廣場參加環(huán)保知識的志愿宣傳活動,求所抽取的名同學(xué)來自同一組的概率.
(Ⅲ)在(Ⅱ)的條件下,設(shè)表示所抽取的名同學(xué)中來自第組的人數(shù),求的分布列及其數(shù)學(xué)期望.
組別 | 分組 | 頻數(shù) | 頻率 |
第組 | |||
第組 | |||
第組 | |||
第組 | |||
第組 | |||
合計 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù)
(Ⅰ)求不等式的解集;
(Ⅱ)已知函數(shù)的最小值為,若實數(shù)且,求的
最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)的最小值為-4,且關(guān)于x的不等式f(x)≤0的解集為{x|-1≤x≤3,x∈R}.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)的零點個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com