分析 可設△ABC的三邊分別為a=5,b=7,c=8,運用余弦定理可得cosC,由同角的平方關系可得sinC,再由正弦定理可得該三角形的外接圓半徑;由等面積可得內切圓半徑.
解答 解:可設△ABC的三邊分別為a=5,b=7,c=8,
由余弦定理可得,cosC=$\frac{25+49-64}{2×5×7}$=$\frac{1}{7}$,
可得sinC=$\frac{4\sqrt{3}}{7}$,
可得該三角形的外接圓半徑為R=$\frac{1}{2}•\frac{8}{\frac{4\sqrt{3}}{7}}$=$\frac{{7\sqrt{3}}}{3}$,
由等面積可得$\frac{1}{2}(5+7+8)r=\frac{1}{2}×5×7×\frac{4\sqrt{3}}{7}$,
∴內切圓半徑為$\sqrt{3}$.
故答案為$\frac{{7\sqrt{3}}}{3}$,$\sqrt{3}$.
點評 本題考查三角形的外接圓的半徑、內切圓半徑的求法,注意運用正弦定理和余弦定理,考查運算能力,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=|x|,g(x)=$\sqrt{{x}^{2}}$ | B. | f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2 | ||
C. | f(x)=$\frac{{x}^{2}-1}{x-1}$,g(x)=x+1 | D. | f(x)=$\sqrt{x+1}$,g(x)=$\sqrt{{x}^{2}-1}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 135° | B. | 90° | C. | 45°或135° | D. | 30° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com