【題目】下列說法正確的是( )
A.在(0, )內(nèi),sinx>cosx
B.函數(shù)y=2sin(x+ )的圖象的一條對稱軸是x= π
C.函數(shù)y= 的最大值為π
D.函數(shù)y=sin2x的圖象可以由函數(shù)y=sin(2x﹣ )的圖象向右平移 個單位得到
【答案】C
【解析】解:對于A,當(dāng)x∈(0, )時,由y=sinx,y=cosx的性質(zhì)得:
當(dāng)x∈(0, )時,cosx>sinx,x= 時,sinx=cosx,x∈( , )時,sinx>cosx,故A錯誤;
對于B,令x+ =kπ+ ,k∈Z,顯然當(dāng)x= π時,找不到整數(shù)k使上式成立,故B錯誤;
對于C,由于tan2x≥0,∴1+tan2x≥1.
∴y= ≤π.
∴函數(shù)y= 的最大值為π,C正確;
對于D,y=sin(2x﹣ )的圖象向右平移 個單位得到:y=sin[2(x﹣ )﹣ ]=sin(2x﹣ )=﹣cos2x,故D錯誤.
故選:C.
【考點精析】解答此題的關(guān)鍵在于理解命題的真假判斷與應(yīng)用的相關(guān)知識,掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】不等式ax2﹣2x+1>0對x∈( ,+∞)恒成立,則a的取值范圍為( )
A.(0,+∞)
B.(1,+∞)
C.(0,1)
D.[1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式ax2+5x+c>0的解集為{x| <x< },
(1)求a,c的值;
(2)解關(guān)于x的不等式ax2+(ac+b)x+bc≥0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知圓的極坐標(biāo)方程為,以極點為原點,極軸為軸的正半軸建立平面直角坐標(biāo)系,取相同單位長度(其中, ),若傾斜角為且經(jīng)過坐標(biāo)原點的直線與圓相交于點(點不是原點).
(1)求點的極坐標(biāo);
(2)設(shè)直線過線段的中點,且直線交圓于兩點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知側(cè)棱垂直于底面的四棱柱中, , , , .
(1)若是線段上的點且滿足,求證:平面平面;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,動圓與圓外切,且與直線相切,記圓心的軌跡為曲線.
(1)求曲線的方程;
(2)設(shè)過定點(為非零常數(shù))的動直線與曲線交于兩點,問:在曲線上是否存在點(與兩點相異),當(dāng)直線的斜率存在時,直線的斜率之和為定值.若存在,求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是菱形,且,點是棱的中點,平面與棱交于點.
()求證: .
()若,且平面平面,
求①二面角的銳二面角的余弦值.
②在線段上是否存在一點,使得直線與平面所成角等于,若存在,確定的位置,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com