【題目】選修4-5:不等式選講

(Ⅰ)已知,證明: ;

(Ⅱ)若對(duì)任意實(shí)數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍.

【答案】(Ⅰ)見(jiàn)解析;(Ⅱ) .

【解析】試題分析:利用條件運(yùn)用基本不等式將原式化為,再應(yīng)用條件,即可得結(jié)果;(“對(duì)任意實(shí)數(shù),不等式恒成立”等價(jià)于“,只需求出的最小值即可得結(jié)果.

試題解析:(Ⅰ)證明:因?yàn)?/span>,

所以.

所以要證明

即證明.

因?yàn)?/span>

,

所以.

因?yàn)?/span>,所以.

所以.

(Ⅱ)設(shè),

則“對(duì)任意實(shí)數(shù),不等式恒成立”等價(jià)于“”.

當(dāng)時(shí),

此時(shí)

要使恒成立,必須,解得.

當(dāng)時(shí), 不可能恒成立.

當(dāng)時(shí),

此時(shí),

要使恒成立,必須,解得.

綜上可知,實(shí)數(shù)的取范為.

【方法點(diǎn)晴】本題主要考查絕對(duì)值不等式的解法以及不等式恒成立問(wèn)題,屬于難題.不等式恒成立問(wèn)題常見(jiàn)方法:① 分離參數(shù)恒成立(可)或恒成立(即可);② 數(shù)形結(jié)合(圖象在 上方即可);③ 討論最值恒成立;④ 討論參數(shù).本題是利用方法 ③ 求得的范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是圓心為的圓上的動(dòng)點(diǎn),點(diǎn) 為坐標(biāo)原點(diǎn),線段的垂直平分線交于點(diǎn).

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)過(guò)原點(diǎn)作直線交(1)中的軌跡于點(diǎn),點(diǎn)在軌跡上,且,點(diǎn)滿足,試求四邊形的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,函數(shù)g(x)=asin( )﹣2α+2(a>0),若存在x1 , x2∈[0,1],使得f(x1)=g(x2)成立,則實(shí)數(shù)a的取值范圍是(
A.[ ]
B.(0, ]
C.[ ]
D.[ ,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是首項(xiàng)為19公差為-2的等差數(shù)列,的前項(xiàng)和

1求通項(xiàng);

2設(shè)是首項(xiàng)為1公比為3的等比數(shù)列,求數(shù)列的通項(xiàng)公式及其前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是等差數(shù)列,其前項(xiàng)和為 是等比數(shù)列,且, ,

(1)求數(shù)列的通項(xiàng)公式;

(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,已知直線的普通方程為,曲線的參數(shù)方程為為參數(shù)),設(shè)直線與曲線交于, 兩點(diǎn).

(Ⅰ)求線段的長(zhǎng);

(Ⅱ)已知點(diǎn)在曲線上運(yùn)動(dòng),當(dāng)的面積最大時(shí),求點(diǎn)的坐標(biāo)及的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線、軸交于兩點(diǎn).

Ⅰ)若點(diǎn)、分別是雙曲線的虛軸、實(shí)軸的一個(gè)端點(diǎn),試在平面上找兩點(diǎn)、,使得雙曲線上任意一點(diǎn)到這兩點(diǎn)距離差的絕對(duì)值是定值.

Ⅱ)若以原點(diǎn)為圓心的圓截直線所得弦長(zhǎng)是,求圓的方程以及這條弦的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的前n項(xiàng)和為,且對(duì)任意正整數(shù)n,點(diǎn)(,)在直線上.

(1)求數(shù)列的通項(xiàng)公式;

(2)是否存在實(shí)數(shù)λ,使得數(shù)列{ }為等差數(shù)列?若存在,求出λ的值;若不存在,請(qǐng)說(shuō)明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是(
A.在(0, )內(nèi),sinx>cosx
B.函數(shù)y=2sin(x+ )的圖象的一條對(duì)稱軸是x= π
C.函數(shù)y= 的最大值為π
D.函數(shù)y=sin2x的圖象可以由函數(shù)y=sin(2x﹣ )的圖象向右平移 個(gè)單位得到

查看答案和解析>>

同步練習(xí)冊(cè)答案