設(shè)定義在R上的函數(shù)f(x)滿足f(x)f(x+3)=12,f(1)=4,則f(100)=
 
考點:函數(shù)的周期性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由已知中函數(shù)f(x)滿足f(x)f(x+3)=12,可得函數(shù)f(x)是T=6的周期函數(shù),由f(1)=4,可得f(4)=3,進而得到答案.
解答: 解:∵函數(shù)f(x)滿足f(x)f(x+3)=12,
∴f(x+3)f[(x+3)+3]=12,
∴f(x+6)=f(x),
∴函數(shù)f(x)是T=6的周期函數(shù),
又∵f(1)=4,
∴f(4)=3,
∴f(100)=f(4+6×16)=f(4)=3,
故答案為:3
點評:本題考查的知識點是函數(shù)的周期性,其中分析出函數(shù)f(x)是T=6的周期函數(shù),是解答的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別是A,B,C三內(nèi)角所對應(yīng)的邊,若a2+c2-b2=ac,則角B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:an+1=-
1
2
an+
3
2
(n∈N*),a1=4,Sn是其前n項和,則滿足不等式|Sn-n-2|<
1
2014
的最小正整數(shù)n的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(n)=1+
1
2
+
1
3
+…+
1
n
(n∈N*),計算可得f(2)=
3
2
,f(4)>2,f(8)>
5
2
,f(16)>3,f(32)>
7
2
,推測當n≥2時,有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y=x2上的一動點M到直線l:x-y-1=0距離的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了測量一個心形圖形的面積,現(xiàn)使用計算機設(shè)計一個模擬實驗,將該圖形放在一個邊長為2cm的正方形中(如圖所示),發(fā)現(xiàn)在正方形中的10000個隨機的點中有3000個點落在該圖形內(nèi),則這個心形圖形的面積為
 
cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:
cos(180°+α)•sin(α+360°)
sin(-α-180°)•cos(-180°-α)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sinx+
3
cosx(x∈R)的圖象向左平移m(m>0)個單位長度后,所得到的圖象關(guān)于y軸對稱,則m的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面α∥β,P是平面α,β外的一點,過點P的直線m與平面α,β分別交于A,C兩點,過點P的直線n與平面α,β分別交于B,D兩點,若PA=6,AC=9,PD=10,則BD的長為
 

查看答案和解析>>

同步練習冊答案