【答案】
分析:(1)根據(jù)條件,寫(xiě)出函數(shù)F(x)=f(x)-g(x),利用配方法可知F(x)在[3,+∞)上單調(diào)遞增,從而可求函數(shù)的值域;
(2)寫(xiě)出G(x)=x
3+x
2-10x+8,再用定義法證明即可;
(3)利用圖象法求解,由f(x)=g(x)得x|x-a|+4=x+2即x|x-a|=x-2,構(gòu)造兩個(gè)函數(shù),在同一坐標(biāo)系中,作出它們的圖象,從而得解.
解答:解(1)F(x)=f(x)-g(x)=x
2-4x-2=(x-2)
2-6--------------------------(3分)
F(x)在[3,+∞)上單調(diào)遞增,------------------------(4分)
當(dāng)x∈[3,+∞)時(shí),F(xiàn)(x)的值域?yàn)閇-5,+∞)-------------------------------------------------(6分)
(2)G(x)=f(x)•g(x)=(x
2-3x+2)(x+4)=x
3+x
2-10x+8---------------------------------------(8分)
對(duì)任意x
1,x
2∈[3,+∞),且x
1<x
2由G(x
1)-G(x
2)=(x
1-x
2)(x
12+x
1x
2+x
22+x
1+x
2-10)<0
知G(x)=f(x)•g(x)在[3,+∞)上的單調(diào)遞增.-----------------------------------------(12分)
(3)由f(x)=g(x)得x|x-a|+4=x+2即x|x-a|=x-2
令
,p(x)=x-2--------------------(14分)
由圖象容易得到
當(dāng)a=0時(shí),兩圖象只有一個(gè)交點(diǎn),不合題意;
當(dāng)a<0時(shí),由x
2-(a+1)x+2=0,令
所以,當(dāng)
時(shí),符合題意----------------------------------(16分)
當(dāng)a>0時(shí),令p(x)=x-2=0⇒x=2,所以要使得兩圖象有三個(gè)交點(diǎn),必須a>2,
所以當(dāng)
或a>2時(shí),方程f(x)=g(x)有三個(gè)不同的解;----------------------(18分)
點(diǎn)評(píng):本題的考點(diǎn)是函數(shù)與方程的綜合運(yùn)用,主要考查函數(shù)的單調(diào)性,函數(shù)的值域,考查方程解的研究,關(guān)鍵是合理構(gòu)造函數(shù),合理轉(zhuǎn)化.