1.二次函數(shù)y=x2-2x-2的單調(diào)減區(qū)間是( 。
A.(1,+∞)B.(-∞,1)C.(0,1)D.(-1,0)

分析 判斷二次函數(shù)的開口方向,對稱軸方程,即可得到結(jié)果.

解答 解:二次函數(shù)y=x2-2x-2的開口向上,對稱軸為:x=1,
所以函數(shù)的單調(diào)減區(qū)間為:(-∞,1).
故選:B.

點(diǎn)評 本題考查二次函數(shù)的簡單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.一個口袋中裝有大小形狀完全相同的紅色球1個、黃色球2個、藍(lán)色球3個.現(xiàn)進(jìn)行從口袋中摸球的游戲:摸到紅球得1分、摸到黃球得2分、摸到藍(lán)球得3分.從口袋中隨機(jī)摸出2個球,設(shè)ξ表示所摸2球的得分之和,求ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.現(xiàn)有10道題,期中6道難題,4道簡單題,張同學(xué)從中任選3道題解答.已知所取3道題中有2道難題,1道簡單題.設(shè)張同學(xué)答對每道難題的概率都是$\frac{2}{5}$,答對每道簡單題的概率都是$\frac{4}{5}$,且各題答對與否相互獨(dú)立,用X表示張同學(xué)答對題的個數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.經(jīng)過兩點(diǎn)A(2,3),B(1,4)的直線的斜率為-1,若且點(diǎn)C(a,9)在直線AB上,則
a=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知命題p:在x∈[1,2]時,不等式x2+ax-2>0恒成立;命題q:函數(shù)$f(x)={log_{\frac{1}{3}}}({x^2}-2ax+3a)$是區(qū)間[1,+∞)上的減函數(shù).若命題“p或q”是真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.$\int_{-\frac{π}{2}}^{\frac{π}{2}}{(1-cosx)dx}$=π+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在平面直角坐標(biāo)系xOy中,已知斜率為-1的直線l與橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)相交于A,B兩點(diǎn),且AB的中點(diǎn)為M(2,1)
(1)求橢圓的離心率;
(2)設(shè)橢圓的右焦點(diǎn)為F,且AF•BF=5,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知平行四邊形ABCD中,$\overrightarrow{AD}$=$\overrightarrow a$,$\overrightarrow{AB}$=$\overrightarrow b$,M為AB中點(diǎn),N為BD靠近B的三等分點(diǎn).
(1)用基底$\overrightarrow a$,$\overrightarrow b$表示向量$\overrightarrow{MC}$,$\overrightarrow{NC}$;
(2)求證:M、N、C三點(diǎn)共線.并證明:CM=3MN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.隨著手機(jī)使用的不斷普及,現(xiàn)在全國各地的中小學(xué)生攜帶手機(jī)進(jìn)入校園已經(jīng)成為了普遍的現(xiàn)象,也引起了一系列的問題.然而,是堵還是疏,就擺在了我們學(xué)校老師的面前.某研究型學(xué)習(xí)小組調(diào)查研究“中學(xué)生使用手機(jī)對學(xué)習(xí)的影響”,部分統(tǒng)計(jì)數(shù)據(jù)如下表:
不使用手機(jī)使用手機(jī)合計(jì)
學(xué)習(xí)成績優(yōu)秀人數(shù)18725
學(xué)習(xí)成績不優(yōu)秀人數(shù)61925
合計(jì)242650
參考數(shù)據(jù):K2=$\frac{n(ad-bc)^{2}}{(a+c)(b+d)(a+b)(c+d)}$,其中n=a+b+c+d
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828
(1)試根據(jù)以上數(shù)據(jù),運(yùn)用獨(dú)立性檢驗(yàn)思想,指出有多大把握認(rèn)為中學(xué)生使用手機(jī)對學(xué)習(xí)有影響?
(2)研究小組將該樣本中使用手機(jī)且成績優(yōu)秀的7位同學(xué)記為A組,不使用手機(jī)且成績優(yōu)秀的18位同學(xué)記為B組,計(jì)劃從A組推選的2人和B組推選的3人中,隨機(jī)挑選兩人來分享學(xué)習(xí)經(jīng)驗(yàn).求挑選的兩人中一人來自A組、另一人來自B組的概率.

查看答案和解析>>

同步練習(xí)冊答案