【題目】如圖,在四棱錐中,底面是邊長為2的正方形,側面是等腰直角三角形,且,側面⊥底面.

(1)若分別為棱的中點,求證:∥平面;

(2)棱上是否存在一點,使二面角角,若存在,求出的長;若不存在,請說明理由.

【答案】(1)見解析( 2)

【解析】

分析:(1)中點,連結,由三角形中位線定理可得,可證明四邊形為平行四邊形,可得,由線面平行的判定定理可得結論;(2)中點,連結、,先證明、兩兩垂直. 為原點,分別以、、正方向為軸、軸、軸正方向建立空間直角坐標系,利用向量垂直數(shù)量積為零列方程組,求出平面的法向量平面的法向量為,由空間向量夾角余弦公式列方程可得結果.

詳解(1)取中點,連結,∵分別為、中點,∴//,, 又點中點,∴,∴四邊形為平行四邊形,∴,

平面, 平面,∴∥平面.

(2)取中點,連結、,∵ 是以 為直角的等腰直角三角形,又的中點,∴ ,又平面⊥平面,由面面垂直的性質(zhì)定理得⊥平面,又 平面,∴,由已知易得:、兩兩垂直. 以為原點,分別以、正方向為x軸、y軸、z軸正方向建立空間直角坐標系如圖示,

,設 ,

則:,.

設平面ABF的法向量為,則,

,令,則

,∴.

又平面的法向量為,由二面角角得:,

,解得:,或不合題意,舍去

.∴,當棱上的點滿足時, 二面角角.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù))若以O點為極點,x軸正半軸為極軸建立極坐標系,則曲線C的極坐標方程為ρ=4cos θ.
(1)求曲線C的直角坐標方程及直線l的普通方程;
(2)將曲線C上各點的橫坐標縮短為原來的 ,再將所得曲線向左平移1個單位,得到曲線C1 , 求曲線C1上的點到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題正確個數(shù)為(

1)若,當時,則上是單調(diào)遞增函數(shù);

2單調(diào)減區(qū)間為;

3

-3

-2

-1

0

1

2

3

4

3

2

1

-2

-3

-4

上述表格中的函數(shù)是奇函數(shù);

4)若上的偶函數(shù),則都在圖像上.

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當 時,求函數(shù)圖象在點處的切線方程;

(2)當時,討論函數(shù)的單調(diào)性;

(3)是否存在實數(shù),對任意,恒成立?若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(1)求函數(shù)的單調(diào)區(qū)間;

(2)對一切, 恒成立,求實數(shù)的取值范圍;

(3)證明:對一切,都有成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,函數(shù).

(1) 若,求曲線處的切線方程;

(2)求函數(shù)單調(diào)區(qū)間

(3) 若有兩個零點,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校從參加高三模擬考試的學生中隨機抽取60名學生,將其數(shù)學成績(均為整數(shù))分成六段[90,100),[100,110),…,[140,150)后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:

求分數(shù)在[120,130)內(nèi)的頻率,并補全這個頻

率分布直方圖;

統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點

值作為代表,據(jù)此估計本次考試的平均分;

(3)用分層抽樣的方法在分數(shù)段為[110,130)的學生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2個,求至多有1人在分數(shù)段[120,130)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個不透明的袋子裝有4個完全相同的小球,球上分別標有數(shù)字為0,1,2,2,現(xiàn)甲從中摸出一個球后便放回,乙再從中摸出一個球,若摸出的球上數(shù)字大即獲勝(若數(shù)字相同則為平局),則在甲獲勝的條件下,乙摸1號球的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】解答
(1)設函數(shù)f(x)=|x﹣ |+|x﹣a|,x∈R,若關于x的不等式f(x)≥a在R上恒成立,求實數(shù)a的最大值;
(2)已知正數(shù)x,y,z滿足x+2y+3z=1,求 + + 的最小值.

查看答案和解析>>

同步練習冊答案