【題目】設(shè)函數(shù)(為常數(shù),是自然對數(shù)的底數(shù)).
(Ⅰ)當時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)在內(nèi)存在兩個極值點,求的取值范圍.
【答案】(1)單調(diào)遞減區(qū)間為單調(diào)遞增區(qū)間為.(2)
【解析】分析:(Ⅰ)求出,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;(Ⅱ)函數(shù)在內(nèi)存在兩個極值點,等價于它的導(dǎo)函數(shù)在內(nèi)存內(nèi)有兩個不同的零點. 分三種情況討論,分別利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,結(jié)合函數(shù)圖,利用兩點存在定理列不等式組,從而可得符合題意的的取值范圍.
詳解:(Ⅰ)的定義域為,
當時,,
令則
當時, 單調(diào)遞減;
當 單調(diào)遞增,
的單調(diào)遞減區(qū)間為單調(diào)遞增區(qū)間為.
(Ⅱ)由(Ⅰ)知,時,函數(shù)在內(nèi)單調(diào)遞減,
故在內(nèi)不存在極值點;
當,設(shè)函數(shù).
,
當時,
當時,,單調(diào)遞增,
故故在內(nèi)不存在兩個極值點;
當時,
得時,,函數(shù)單調(diào)遞減,
時,,函數(shù)單調(diào)遞增,
函數(shù)的最小值為
函數(shù)在內(nèi)存在兩個極值點
當且僅當
解得:
綜上所述,函數(shù)在內(nèi)存在兩個極值點時,的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)k>0,函數(shù)f(x)=+x+kln|x﹣1|.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當函數(shù)f(x)有兩個極值點,且0<θ<π時,證明:(2k﹣1)sinθ+(1﹣k)sin[(1﹣k)θ]>0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正三棱錐P﹣ABC,點P、A、B、C都在半徑為的球面上,若PA、PB、PC兩兩互相垂直,則球心到截面ABC的距離為( 。
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|,其中a>1
(1)當a=2時,求不等式f(x)≥4﹣|x﹣4|的解集;
(2)已知關(guān)于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學在校就餐的高一年級學生有440名,高二年級學生有460名,高三年級學生有500名;為了解學校食堂的服務(wù)質(zhì)量情況,用分層抽樣的方法從中抽取70名學生進行抽樣調(diào)查,把學生對食堂的“服務(wù)滿意度”與“價格滿意度”都分為五個等級:1級(很不滿意);2級(不滿意);3級(一般);4級(滿意);5級(很滿意),其統(tǒng)計結(jié)果如下表(服務(wù)滿意度為x,價格滿意度為y).
y | 價格滿意度 | |||||
1 | 2 | 3 | 4 | 5 | ||
服 | 1 | 1 | 1 | 2 | 2 | 0 |
2 | 2 | 1 | 3 | 4 | 1 | |
3 | 3 | 7 | 8 | 8 | 4 | |
4 | 1 | 4 | 6 | 4 | 1 | |
5 | 0 | 1 | 2 | 3 | 1 |
(1)求高二年級共抽取學生人數(shù);
(2)求“服務(wù)滿意度”為3時的5個“價格滿意度”數(shù)據(jù)的方差;
(3)為提高食堂服務(wù)質(zhì)量,現(xiàn)從x<3且2≤y<4的所有學生中隨機抽取兩人征求意見,求至少有一人的“服務(wù)滿意度”為1的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】養(yǎng)正中學新校區(qū)內(nèi)有一塊以O為圓心,R(單位:米)為半徑的半圓形荒地(如圖),校總務(wù)處計劃對其開發(fā)利用,其中弓形BCD區(qū)域(陰影部分)用于種植觀賞植物,△OBD區(qū)域用于種植花卉出售,其余區(qū)域用于種植草皮出售。已知種植觀賞植物的成本是每平方米20元,種植花卉的利潤是每平方米80元,種植草皮的利潤是每平方米30元。
(1)設(shè)(單位:弧度),用表示弓形BCD的面積
(2)如果該?倓(wù)處邀請你規(guī)劃這塊土地。如何設(shè)計的大小才能使總利潤最大?并求出該最大值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】點O為坐標原點,直線l經(jīng)過拋物線C:y2=4x的焦點F.
(Ⅰ)若點O到直線l的距離為 , 求直線l的方程;
(Ⅱ)設(shè)點A是直線l與拋物線C在第一象限的交點.點B是以點F為圓心,|FA|為半徑的圓與x軸負半軸的交點.試判斷直線AB與拋物線C的位置關(guān)系,并給出證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com