A. | $\sqrt{2}$ | B. | 2 | C. | $2\sqrt{2}$ | D. | 4 |
分析 作出不等式組對應(yīng)的平面區(qū)域,利用數(shù)形結(jié)合即可得到結(jié)論.
解答 解:設(shè)z=x2+y2,則z的幾何意義為動(dòng)點(diǎn)P(x,y)到原點(diǎn)距離的平方.
作出不等式組對應(yīng)的平面區(qū)域如圖:
由圖象可知原點(diǎn)到直線x+y=a的距離最小和直線x-y=a的距離最小
由點(diǎn)到直線的距離公式得d=$\frac{a}{\sqrt{2}}$,
所以z=x2+y2的最小值為z=d2=$\frac{{a}^{2}}{2}$=2,
解得a=2,
故選:B.
點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,利用點(diǎn)到直線的距離公式以及點(diǎn)與平面區(qū)域之間的關(guān)系是解決本題的關(guān)鍵,利用數(shù)形結(jié)合是解決線性規(guī)劃的基本方法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{10}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{7}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({\frac{π}{6},0})$ | B. | $({\frac{π}{12},0})$ | C. | $({\frac{π}{6},1})$ | D. | $({\frac{π}{12},1})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com