10.已知實(shí)數(shù) x,y滿足$\left\{\begin{array}{l}x+y≥a\\ x-y≤a\\ y≤a\end{array}\right.({a>0})$,若z=x2+y2的最小值為 2,則 a的值為( 。
A.$\sqrt{2}$B.2C.$2\sqrt{2}$D.4

分析 作出不等式組對應(yīng)的平面區(qū)域,利用數(shù)形結(jié)合即可得到結(jié)論.

解答 解:設(shè)z=x2+y2,則z的幾何意義為動(dòng)點(diǎn)P(x,y)到原點(diǎn)距離的平方.
作出不等式組對應(yīng)的平面區(qū)域如圖:
由圖象可知原點(diǎn)到直線x+y=a的距離最小和直線x-y=a的距離最小
由點(diǎn)到直線的距離公式得d=$\frac{a}{\sqrt{2}}$,
所以z=x2+y2的最小值為z=d2=$\frac{{a}^{2}}{2}$=2,
解得a=2,
故選:B.

點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,利用點(diǎn)到直線的距離公式以及點(diǎn)與平面區(qū)域之間的關(guān)系是解決本題的關(guān)鍵,利用數(shù)形結(jié)合是解決線性規(guī)劃的基本方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若x,y滿足$\left\{\begin{array}{l}{x+y≤4}\\{y-2x+2≤0}\\{y≥0}\end{array}\right.$,若z=x+2y,則z的最大值是(  )
A.1B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ax2+x+a,g(x)=ex
(Ⅰ)函數(shù)f(x)的圖象在點(diǎn)(1,f(1))處的切線與2x+y-1=0平行,求實(shí)數(shù)a的值;
(Ⅱ)設(shè)h(x)=$\frac{f(x)}{g(x)}$,當(dāng)x∈[0,2]時(shí),$\frac{f(x)}{g(x)}$≥$\frac{1}{g(2)}$恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.從1,2,3,4,5這5個(gè)數(shù)字中隨機(jī)抽取3個(gè),則所抽取的數(shù)字之和能被4整除的概率為( 。
A.$\frac{3}{10}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{7}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=ax-lnx+x2
(Ⅰ)若a=-1,求函數(shù)f(x)的極值;
(Ⅱ)若a=1,?x1∈(1,2),?x2∈(1,2),使得f(x1)-x12=mx2-$\frac{1}{3}m{x_2}$3(m≠0),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,內(nèi)角 A,B,C所對的邊分別為a,b,c,且滿足b2+c2-a2=2bcsin(B+C).
(1)求角 A的大;
(2)若$a=2,B=\frac{π}{3}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)=({ax+a+2})ln({x+1})+\frac{1}{2}a{x^2}-({2+a})x+1$.
(1)當(dāng)a=1時(shí),判斷f(x)的單調(diào)性;
(2)若f(x)在[0,+∞)上為單調(diào)增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.將函數(shù)$f(x)=2sin({x+\frac{π}{6}})+1$的圖象向右平移$\frac{π}{3}$個(gè)單位,再把所有點(diǎn)的橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍(縱坐標(biāo)不變),得函數(shù)y=g(x)的圖象,則g(x)圖象的一個(gè)對稱中心為(  )
A.$({\frac{π}{6},0})$B.$({\frac{π}{12},0})$C.$({\frac{π}{6},1})$D.$({\frac{π}{12},1})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)z是復(fù)數(shù),|z-i|≤2(i是虛數(shù)單位),則|z|的最大值是   ( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案