【題目】已知正方體的棱長為2,點分別是棱的中點,則二面角的余弦值為_________;若動點在正方形(包括邊界)內(nèi)運(yùn)動,且平面,則線段的長度范圍是_________.
【答案】
【解析】
延長AM交DC于點Q,過C作AM垂線CG,垂足為G,連接NG,則∠NGC為二面角的平面角,計算可得結(jié)果;取的中點,的中點,連結(jié),,,取中點,連結(jié),推導(dǎo)出平面平面,從而點的軌跡是線段,由此能求出的長度范圍.
延長AM交DC于點Q,過C作AM垂線CG,垂足為G,連接NG,
則∠NGC為二面角的平面角,
計算得,,
所以
取的中點,的中點,連接,,,取中點,連接,
點,分別是棱長為2的正方體中棱,的中點,
,,
,,
平面平面,
動點在正方形(包括邊界)內(nèi)運(yùn)動,且面,
點的軌跡是線段,
,,
,
當(dāng)與重合時,的長度取最小值,
當(dāng)與(或重合時,的長度取最大值為.
的長度范圍為.
故答案為:;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), .
(1)求的單調(diào)區(qū)間和極值;
(2)證明:若存在零點,則在區(qū)間上僅有一個零點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出以下三個條件:
①數(shù)列是首項為 2,滿足的數(shù)列;
②數(shù)列是首項為2,滿足(λ∈R)的數(shù)列;
③數(shù)列是首項為2,滿足的數(shù)列..
請從這三個條件中任選一個將下面的題目補(bǔ)充完整,并求解.
設(shè)數(shù)列的前n項和為,與滿足______,記數(shù)列,,求數(shù)列{}的前n項和;
(注:如選擇多個條件分別解答,按第一個解答計分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)函數(shù),當(dāng)時,恒成立,求整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用表示一個小于或等于的最大整數(shù).如:,,. 已知實數(shù)列、、對于所有非負(fù)整數(shù)滿足,其中是任意一個非零實數(shù).
(Ⅰ)若,寫出、、;
(Ⅱ)若,求數(shù)列的最小值;
(Ⅲ)證明:存在非負(fù)整數(shù),使得當(dāng)時,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸非負(fù)半軸為極軸建立極坐標(biāo)系,點為曲線上的動點,點在線段的延長線上且滿足點的軌跡為.
(1)求曲線的極坐標(biāo)方程;
(2)設(shè)點的極坐標(biāo)為,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某央企在一個社區(qū)隨機(jī)采訪男性和女性用戶各50名,統(tǒng)計他(她)們一天()使用手機(jī)的時間,其中每天使用手機(jī)超過6小時(含6小時)的用戶稱為“手機(jī)迷”,否則稱其為“非手機(jī)迷”,調(diào)查結(jié)果如下:
男性用戶的頻數(shù)分布表
男性用戶日用時間分組() | |||||
頻數(shù) | 20 | 12 | 8 | 6 | 4 |
女性用戶的頻數(shù)分布表
女性用戶日用時間分組() | |||||
頻數(shù) | 25 | 10 | 6 | 8 | 1 |
(1)分別估計男性用戶,女性用戶“手機(jī)迷”的頻率;
(2)求男性用戶每天使用手機(jī)所花時間的中位數(shù);
(3)求女性用戶每天使用手機(jī)所花時間的平均數(shù)與標(biāo)準(zhǔn)差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線,把上各點橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,得到函數(shù)的圖象,關(guān)于有下述四個結(jié)論:
(1)函數(shù)在上是減函數(shù);
(2)方程在內(nèi)有2個根;
(3)函數(shù)(其中)的最小值為;
(4)當(dāng),且時,,則.
其中正確結(jié)論的個數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系.xOy中,曲線C1的參數(shù)方程為( 為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4sinθ.
(1)求曲線C1的普通方程和C2的直角坐標(biāo)方程;
(2)已知曲線C2的極坐標(biāo)方程為,點A是曲線C3與C1的交點,點B是曲線C3與C2的交點,且A,B均異于原點O,且|AB|=4,求α的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com