【題目】在如圖所示的幾何體中,平面平面,四邊形為等腰梯形,四邊形為菱形.已知

1)線段上是否存在一點,使得平面?證明你的結(jié)論.

2)若線段在平面上的投影長度為,求直線與平面所成角的正弦值.

【答案】1)且的中點,證明見解析;(2

【解析】

1)首先利用三角形的中位線推出,然后利用直線與平面平行的判定定理證明即可;(2)建立空間直角坐標系,求出直線的方向向量、平面的法向量,利用向量即可求解.

解:(1)在線段上存在一點,使得平面,且的中點.

證明如下:

如圖,連接于點,連接四邊形為菱形,的中點.

中,由中位線定理可得.

平面,平面平面

在線段上存在一點,使得平面,且的中點.

2)解:,線段在平面上的投影長度為,

線段在平面上的投影長度為.因為平面平面,交線為,

如圖,過于點,則平面

,為線段的中點.以為坐標原點,所在的直線為軸,

平行于的直線為軸,過垂直于平面的直線為軸建立空間直角坐標系,

可得,,,,,

設平面的法向量為,則,得,

,則.設直線與平面所成的角為,

直線與平面所成角的正弦值為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某公司準備設計一個精美的心形巧克力盒子,它是由半圓、半圓和正方形ABCD組成的,且.設計人員想在心形盒子表面上設計一個矩形的標簽EFGH,標簽的其中兩個頂點E,FAM上,另外兩個頂點G,HCN上(M,N分別是ABCB的中點).設EF的中點為P,,矩形EFGH的面積為

1)寫出S關(guān)于的函數(shù)關(guān)系式

2)當為何值時矩形EFGH的面積最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】1是某高架橋箱梁的橫截面,它由上部路面和下部支撐箱兩部分組成.如圖2,路面寬度,下部支撐箱CDEF為等腰梯形(),且.為了保證承重能力與穩(wěn)定性,需下部支撐箱的面積為,高度為2m,若路面AB側(cè)邊CFDE,底部EF的造價分別為4a千元/m,5a千元/m6a千元/ma為正常數(shù)),

1)試用θ表示箱梁的總造價y(千元);

2)試確定cosθ的值,使總造價最低?并求最低總造價.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】斜率為的直線過拋物線的焦點,且與拋物線交于,兩點.

1)設點在笫一象限,過作拋物線的準線的垂線,為垂足,且,求點的坐標;

2)過且與垂直的直線與圓交于,兩點,若面積之和為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校擬從甲、乙兩名同學中選一人參加疫情知識問答競賽,于是抽取了甲、乙兩人最近同時參加校內(nèi)競賽的十次成績,將統(tǒng)計情況繪制成如圖所示的折線圖.根據(jù)該折線圖,下面結(jié)論正確的是(

A.甲、乙成績的中位數(shù)均為7

B.乙的成績的平均分為6.8

C.甲從第四次到第六次成績的下降速率要大于乙從第四次到第五次的下降速率

D.甲的成績的方差小于乙的成績的方差

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某中學甲、乙兩班共有25名學生報名參加了一項 測試.這25位學生的考分編成的莖葉圖,其中有一個數(shù)據(jù)因電腦操作員不小心刪掉了(這里暫用x來表示),但他清楚地記得兩班學生成績的中位數(shù)相同.

)求這兩個班學生成績的中位數(shù)及x的值;

)如果將這些成績分為優(yōu)秀(得分在175分 以上,包括175分)和過關(guān),若學校再從這兩個班獲得優(yōu)秀成績的考生中選出3名代表學校參加比賽,求這3人中甲班至多有一人入選的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習慣,粽子又稱粽籺,俗稱粽子,古稱角黍,是端午節(jié)大家都會品嘗的食品,傳說這是為了紀念戰(zhàn)國時期楚國大臣、愛國主義詩人屈原,如圖所示,平行四邊形形狀的紙片是由六個邊長為的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為______;若該六面體內(nèi)有一球,則該球體積的最大值為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某生物公司將A型病毒疫苗用100只小白鼠進行科研和臨床試驗,得到統(tǒng)計數(shù)據(jù)如表:

未感染病毒

感染病毒

總計

未注射

10

x

A

注射

40

y

B

總計

50

50

100

現(xiàn)從所有試驗的小白鼠中任取一只,取得注射疫苗小白鼠的概率為

1)能否有99.9%的把握認為注射此型號疫苗有效?

2)現(xiàn)從感染病毒的小白鼠中任取3只進行病理分析,記已注射疫苗的小白鼠只數(shù)為ξ,求ξ的分布列和數(shù)學期望.

附:

PK2k0

0.10

0.010

0.001

k0

2.706

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,E是邊長為1的正方形ABCD的邊CD上的動點(與點CD不重合),,過點E的外角平分線于點F,若,則實數(shù)的取值范圍為(

A.B.C.D.

查看答案和解析>>

同步練習冊答案