當(dāng)1<x<2時(shí),是否存在實(shí)數(shù)a使y=x2-3(a+1)x+2(3a+1)的函數(shù)值小于0恒成立,若存在,則a的范圍是____________.

解析:令f(x)=x2-3(a+1)x+2(3a+1)

∴a的范圍為a≤0.

答案:a∈(-∞,0].

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2x
(Ⅰ)若f(x)的反函數(shù)是函數(shù)y=g(x),解方程g(2x)=2g(x)+10;
(Ⅱ)對于任意a、b、c∈[M,+∞),M>1且a≥b≥c.當(dāng)a,b,c能作為一個(gè)三角形的三邊長時(shí),f(a)、f(b)、f(c)也總能作為某個(gè)三角形的三邊長,試分別探究下面兩個(gè)問題:
(1)當(dāng)1<M<2時(shí),是否存在a、b、c∈[M,+∞),且a≥b≥c,當(dāng)a、b、c能作為一個(gè)三角形的三邊長時(shí),以f(a)、f(b)、f(c)不能作為三角形的三邊長.
(2)M≥2,證明:對于任a、b、c∈[M,+∞),且a≥b≥c,當(dāng)a、b、c能作為一個(gè)三角形的三邊長時(shí),f(a)、f(b)、f(c)總能作為三角形的三邊長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M是滿足下列性質(zhì)的函數(shù)f(x)的全體:存在非零常數(shù)T,使得對任意x∈R,有f(x+T)=Tf(x)成立.
(1)函數(shù)f(x)=x是否屬于M?說明理由;
(2)若函數(shù)f(x)=ax(a>0且a≠1)的圖象與函數(shù)y=x的圖象有公共點(diǎn),求證:f(x)=ax∈M;
(3)設(shè)f(x)∈M,且T=2,已知當(dāng)1<x<2時(shí),f(x)=x+lnx,求當(dāng)-3<x<-2時(shí),f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=log2x
(Ⅰ)若f(x)的反函數(shù)是函數(shù)y=g(x),解方程g(2x)=2g(x)+10;
(Ⅱ)對于任意a、b、c∈[M,+∞),M>1且a≥b≥c.當(dāng)a,b,c能作為一個(gè)三角形的三邊長時(shí),f(a)、f(b)、f(c)也總能作為某個(gè)三角形的三邊長,試分別探究下面兩個(gè)問題:
(1)當(dāng)1<M<2時(shí),是否存在a、b、c∈[M,+∞),且a≥b≥c,當(dāng)a、b、c能作為一個(gè)三角形的三邊長時(shí),以f(a)、f(b)、f(c)不能作為三角形的三邊長.
(2)M≥2,證明:對于任a、b、c∈[M,+∞),且a≥b≥c,當(dāng)a、b、c能作為一個(gè)三角形的三邊長時(shí),f(a)、f(b)、f(c)總能作為三角形的三邊長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省廈門外國語中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=log2x
(Ⅰ)若f(x)的反函數(shù)是函數(shù)y=g(x),解方程g(2x)=2g(x)+10;
(Ⅱ)對于任意a、b、c∈[M,+∞),M>1且a≥b≥c.當(dāng)a,b,c能作為一個(gè)三角形的三邊長時(shí),f(a)、f(b)、f(c)也總能作為某個(gè)三角形的三邊長,試分別探究下面兩個(gè)問題:
(1)當(dāng)1<M<2時(shí),是否存在a、b、c∈[M,+∞),且a≥b≥c,當(dāng)a、b、c能作為一個(gè)三角形的三邊長時(shí),以f(a)、f(b)、f(c)不能作為三角形的三邊長.
(2)M≥2,證明:對于任a、b、c∈[M,+∞),且a≥b≥c,當(dāng)a、b、c能作為一個(gè)三角形的三邊長時(shí),f(a)、f(b)、f(c)總能作為三角形的三邊長.

查看答案和解析>>

同步練習(xí)冊答案