【題目】算籌是在珠算發(fā)明以前我國獨創(chuàng)并且有效的計算工具,為我國古代數(shù)學(xué)的發(fā)展做出了很大貢獻.在算籌計數(shù)法中,以“縱式”和“橫式”兩種方式來表示數(shù)字,如圖:

表示多位數(shù)時,個位用縱式,十位用橫式,百位用縱式,千位用橫式,以此類推,遇零則置空,如圖:

如果把5根算籌以適當(dāng)?shù)姆绞饺糠湃?下面的表格中,那么可以表示的三位數(shù)的個數(shù)為( )

A.

B.

C.

D.

【答案】B

【解析】

先按每一位算籌的根數(shù)分類,再看每一位算籌的根數(shù)能組成幾個數(shù)字.

按每一位算籌的根數(shù)分類一共有15種情況,如下

2根以上的算籌可以表示兩個數(shù)字,運用分布乘法計數(shù)原理,

則上列情況能表示的三位數(shù)字個數(shù)分別為:

2,22,42,4,44,44,2,2,42,2,

根據(jù)分布加法計數(shù)原理,5根算籌能表示的三位數(shù)字個數(shù)為:

.

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某調(diào)查機構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是(

注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.

A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上

B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的

C.互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)90后比80前多

D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為t為參數(shù)),曲線的方程為.以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系.

1)求直線l和曲線的極坐標(biāo)方程;

2)曲線分別交直線l和曲線于點AB,求的最大值及相應(yīng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】黨的十八大指出,倡導(dǎo)富強、民主、文明、和諧,倡導(dǎo)自由、平等、公正、法治,倡導(dǎo)愛國、敬業(yè)、誠信、友善.現(xiàn)在從民主、文明自由、公正、愛國、敬業(yè)6個詞語中任選2個,則至少有一個詞語是從國家層面對社會主義核心價值觀基本理念的凝練的概率是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,.

1)若曲線處的切線與曲線相切,求的值;

2)當(dāng)時,函數(shù)的圖象恒在函數(shù)的圖象的下方,求的取值范圍;

3)若函數(shù)恰有2個不相等的零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖.四棱柱的底面是直角梯形,,,,四邊形均為正方形.

1)證明;平面平面ABCD;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)為曲線上的動點,點在線段上,且滿足,求點的軌跡的直角坐標(biāo)方程;

(2)設(shè)點的極坐標(biāo)為,點在曲線上,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲居住在城鎮(zhèn)的,準(zhǔn)備開車到單位處上班,若該地各路段發(fā)生堵車事件都是相互獨立的,且在同一路段發(fā)生堵車事件最多只有一次,發(fā)生堵車事件的概率如圖(例如:算作兩個路段:路段發(fā)生堵車事件的概率為,路段發(fā)生堵車事件的概率為).

(1)請你為甲選擇一條由的最短路線

(即此人只選擇從西向東和從南向北的路線),

使得途中發(fā)生堵車事件的概率最;

(2)設(shè)甲在路線中遇到的堵車次數(shù)為隨機變量,的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy,曲線=0(a>0),曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系;

(1)求曲線的極坐標(biāo)方程;

(2)已知極坐標(biāo)方程為=的直線與曲線,分別相交于P,Q兩點(均異于原點O),若|PQ|=﹣1,求實數(shù)a的值;

查看答案和解析>>

同步練習(xí)冊答案