【題目】已知在平面直角坐標系xOy中,直線l的參數(shù)方程為t為參數(shù)),曲線的方程為.以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.

1)求直線l和曲線的極坐標方程;

2)曲線分別交直線l和曲線于點A,B,求的最大值及相應的值.

【答案】(1)直線的極坐標方程為:;曲線的極坐標方程為:(2) 時,,的最大值為.

【解析】

(1)參數(shù)方程化為普通方程,只要消去參數(shù)方程中的參數(shù)即可;極坐標方程化為普通方程,只要利用極坐標與直角坐標的函數(shù)關系轉換即可;

(2)設出點的極坐標,結合極坐標的幾何意義與三角函數(shù)求最值的知識,即可求解.

(1)由題意,直線的直角坐標方程為:

直線的極坐標方程為:,

曲線的直角坐標方程:,

曲線的極坐標方程為:.

(2)由題意設:,

(1),,

,,

,即時,,

此時取最大值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)有兩個零點.

1)求的取值范圍;

2)記的極值點為,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為為其左、右頂點,為橢圓上除外任意一點,若記直線的斜率分別為

1)求證:為定值;

2)若橢圓的長軸長為,過點作兩條互相垂直的直線,,若恰好為與橢圓相交的弦的中點,設與橢圓相交的弦的中點,求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是橢圓的左、右焦點,離心率為,是平面內(nèi)兩點,滿足,線段的中點在橢圓上,周長為12.

1)求橢圓的方程;

2)若與圓相切的直線與橢圓交于,求(其中為坐標原點)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C)的左、右頂點分別為A,B,左焦點為F,O為原點,點P為橢圓C上不同于A、B的任一點,若直線PAPB的斜率之積為,且橢圓C經(jīng)過點.

1)求橢圓C的方程;

2)若P點不在坐標軸上,直線PA,PBy軸于M,N兩點,若直線OT與過點MN的圓G相切.切點為T,問切線長是否為定值,若是,求出定值,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】勒洛三角形是具有類似圓的定寬性的曲線,它是由德國機械工程專家、機構運動學家勒洛首先發(fā)現(xiàn),其作法是:以等邊三角形每個頂點為圓心,以邊長為半徑,在另兩個頂點間作一段弧,三段弧圍成的曲邊三角形就是勒洛三角形.如圖中的兩個勒洛三角形,它們所對應的等邊三角形的邊長比為,若從大的勒洛三角形中隨機取一點,則此點取自小勒洛三角形內(nèi)的概率為______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若方程有四個不等實根,時,不等式恒成立,則實數(shù)的最小值為()

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】算籌是在珠算發(fā)明以前我國獨創(chuàng)并且有效的計算工具,為我國古代數(shù)學的發(fā)展做出了很大貢獻.在算籌計數(shù)法中,以“縱式”和“橫式”兩種方式來表示數(shù)字,如圖:

表示多位數(shù)時,個位用縱式,十位用橫式,百位用縱式,千位用橫式,以此類推,遇零則置空,如圖:

如果把5根算籌以適當?shù)姆绞饺糠湃?下面的表格中,那么可以表示的三位數(shù)的個數(shù)為( )

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若直線y=a分別與直線y=2x-3,曲線y=ex-xx≥0)交于點A,B,則|AB|的最小值為( 。

A. B. C. eD.

查看答案和解析>>

同步練習冊答案