若點(diǎn)P到直線y=-2的距離比它到點(diǎn)A(0,1)的距離大1,則點(diǎn)P的軌跡為(  )
A.圓B.橢圓C.雙曲線D.拋物線
D
由條件知,點(diǎn)P到直線y=-1的距離與它到點(diǎn)A(0,1)的距離相等,∴P點(diǎn)軌跡是以A為焦點(diǎn),直線y=-1為準(zhǔn)線的拋物線.選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的焦點(diǎn)分別為,交于兩點(diǎn)(為坐標(biāo)原點(diǎn)),且.
(1)求拋物線的方程;
(2)過點(diǎn)的直線交的下半部分于點(diǎn),交的左半部分于點(diǎn),點(diǎn)坐標(biāo)為,求△面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

我們將不與拋物線對稱軸平行或重合且與拋物線只有一個公共點(diǎn)的直線稱為拋物線的切線,這個公共點(diǎn)稱為切點(diǎn).解決下列問題:
已知拋物線上的點(diǎn)到焦點(diǎn)的距離等于4,直線與拋物線相交于不同的兩點(diǎn)、,且為定值).設(shè)線段的中點(diǎn)為,與直線平行的拋物線的切點(diǎn)為..

(1)求出拋物線方程,并寫出焦點(diǎn)坐標(biāo)、準(zhǔn)線方程;
(2)用表示出點(diǎn)、點(diǎn)的坐標(biāo),并證明垂直于軸;
(3)求的面積,證明的面積與、無關(guān),只與有關(guān).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線=-2y2的準(zhǔn)線方程是                .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

以拋物線y2=4x的焦點(diǎn)為圓心,且過坐標(biāo)原點(diǎn)的圓的方程為(  )
A.x2+y2+2x=0 B.x2+y2+x=0
C.x2+y2-x=0D.x2+y2-2x=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若拋物線y2=2px的焦點(diǎn)與橢圓的右焦點(diǎn)重合,則p的值為( 。
A.﹣2B.2C.﹣4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知等邊三角形的一個頂點(diǎn)在坐標(biāo)原點(diǎn),另外兩個頂點(diǎn)在拋物線上,則該三角形的面積是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線的焦點(diǎn)坐標(biāo)為              

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-1,1),P是動點(diǎn),且△POA的三邊所在直線的斜率滿足kOP+kOA=kPA.

(1)求點(diǎn)P的軌跡C的方程;
(2)若Q是軌跡C上異于點(diǎn)P的一個點(diǎn),且=λ,直線OP與QA交于點(diǎn)M,問:是否存在點(diǎn)P,使得△PQA和△PAM的面積滿足S△PQA=2S△PAM?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案