分析 (1)根據(jù)不等式ax2-3x+6>4的解集為{x|x<1或x>b},可得x=1與x=b是方程ax2-3x+2=0的兩個(gè)實(shí)數(shù)根,利用韋達(dá)定理即可求出實(shí)數(shù)a,b的值
(2)將(1)中的a,b的值帶入,對(duì)c討論求解不等式即可.
解答 解:(1)∵不等式ax2-3x+6>4的解集為{x|x<1或x>b},
∴x1=1與x2=b是方程ax2-3x+2=0的兩個(gè)實(shí)數(shù)根,且b>1.
由根與系數(shù)的關(guān)系,可得:$\frac{2}{a}=b,\frac{3}{a}=1+b$.
解得:a=1,b=2.
(2)由(1)可知a=1,b=2,
∴原不等式ax2-(ac+b)x+bc<0,可化為x2-(2+c)x+2c<0,
即(x-2)(x-c)<0.
①當(dāng)c>2時(shí),不等式(x-2)(x-c)<0的解集為{x|2<x<c};
②當(dāng)c<2時(shí),不等式(x-2)(x-c)<0的解集為{x|c<x<2};
③當(dāng)c=2時(shí),不等式(x-2)(x-c)<0的解集為∅.
點(diǎn)評(píng) 本題主要考查了一元二次不等式的應(yīng)用和討論思想,以及根與系數(shù)的關(guān)系,同時(shí)考查了分析求解的能力和計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 最大值為1 | B. | 圖象關(guān)于直線x=-$\frac{π}{2}$對(duì)稱(chēng) | ||
C. | 既是奇函數(shù)又是周期函數(shù) | D. | 圖象關(guān)于點(diǎn)($\frac{3π}{4}$,0)中心對(duì)稱(chēng) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{23}{4}$ | B. | $\frac{23}{4}$ | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | -$\frac{4}{5}$ | C. | $\frac{5}{4}$ | D. | -$\frac{5}{4}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com