【題目】已知為實數(shù),用表示不超過的最大整數(shù),例如,,.對于函數(shù),若存在且,使得,則稱函數(shù)是“和諧”函數(shù).
(1)判斷函數(shù),是否是“和諧”函數(shù);(只需寫出結(jié)論)
(2)設(shè)函數(shù)是定義在上的周期函數(shù),其最小周期為,若不是“和諧”函數(shù),求的最小值.
(3)若函數(shù)是“和諧”函數(shù),求的取值范圍.
【答案】(1)是“和諧”函數(shù),不是“和諧”函數(shù).(2)最小值為1.(3)且,且
【解析】
(1)根據(jù)“和諧”函數(shù)的定義即可判斷,是否是“和諧”函數(shù).
(2)根據(jù)周期函數(shù)的定義,結(jié)合“和諧”函數(shù)的條件,進行判斷和證明即可.
(3)根據(jù)“和諧”函數(shù)的定義,分別討論,和時,滿足的條件即可.
(1)由題知:是“和諧”函數(shù),
不是“和諧”函數(shù).
(2)的最小值為.
因為是以為最小正周期的周期函數(shù),所以.
假設(shè),則,所以,矛盾.
所以必有,
而函數(shù)的周期為1,且顯然不是“和諧”函數(shù),
綜上,的最小值為1.
(3)當(dāng)函數(shù)是“和諧”函數(shù)時,
若,則顯然不是“和諧”函數(shù),矛盾.
若,則,
所以在,上單調(diào)遞增,
此時不存在,使得,
同理不存在,使得,
又注意到,即不會出現(xiàn)的情形,
所以此時不是“和諧”函數(shù).
當(dāng)時,設(shè),
所以,所以有,其中,
當(dāng)時,
因為,所以,
所以.
當(dāng)時,,
因為,所以,
所以.
記,綜上,我們可以得到“且,且”.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動圓與相外切,與相內(nèi)切.
(1)求動圓圓心的軌跡的方程;
(2)是動圓的半徑最小時的圓,傾斜角為且過點的直線l與相切,與軌跡交于,兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】算籌是在珠算發(fā)明以前我國獨創(chuàng)并且有效的計算工具,為我國古代數(shù)學(xué)的發(fā)展做出了很大貢獻.在算籌計數(shù)法中,以“縱式”和“橫式”兩種方式來表示數(shù)字,如圖:
表示多位數(shù)時,個位用縱式,十位用橫式,百位用縱式,千位用橫式,以此類推,遇零則置空,如圖:
如果把5根算籌以適當(dāng)?shù)姆绞饺糠湃?下面的表格中,那么可以表示的三位數(shù)的個數(shù)為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為做好創(chuàng)建國家生態(tài)文明單位的需要,某地甲、乙兩大型企業(yè)決定先從本企業(yè)的所有員工中隨機抽取8名員工,對自己所在企業(yè)的生態(tài)文明建設(shè)狀況進行自我內(nèi)部的評分調(diào)查(滿分100分),被抽取的員工的評分結(jié)果如右表:
(1)若分別從甲、乙兩企業(yè)被抽取的8名員工中各抽取1名,在已知兩人中至少一人評分不低于80分的條件下,求抽到的甲企業(yè)員工評分低于80分的概率;
(2)用樣本的頻率分布估計總體的概率分布,若從甲企業(yè)的所有員工中,再隨機抽取4名員工進行評分細節(jié)調(diào)查,記抽取的這4名員工中評分不低于90分的人數(shù)為,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某生物興趣小組對冬季晝夜溫差與反季節(jié)新品種大豆發(fā)芽數(shù)之間的關(guān)系進行研究,他們分別記錄了月日至月日每天的晝夜溫差與實驗室每天顆種子的發(fā)芽數(shù),得到以下表格
該興趣小組確定的研究方案是:先從這組數(shù)據(jù)中選取組數(shù)據(jù),然后用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進行檢驗.
(1) 求統(tǒng)計數(shù)據(jù)中發(fā)芽數(shù)的平均數(shù)與方差;
(2) 若選取的是月日與月日的兩組數(shù)據(jù),請根據(jù)月日至月日的數(shù)據(jù),求出發(fā)芽數(shù)關(guān)于溫差的線性回歸方程,若由線性回歸方程得到的估計數(shù)據(jù)與所選取的檢驗數(shù)據(jù)的誤差不超過,則認(rèn)為得到的線性回歸方程是可靠的,問得到的線性回歸方程是否可靠? 附:線性回歸方程中斜率和截距最小二乘估法計算公式:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)實施“光盤行動”以后,某自助啤酒吧也制定了自己的行動計劃,進店的每一位客人需預(yù)交50元,啤酒根據(jù)需要自己用量杯量取.結(jié)賬時,剩余酒量不足1升的,按0升計算(如剩余1.7升,記為剩余1升).
統(tǒng)計表明飲酒量與人數(shù)有很強的線性相關(guān)關(guān)系,下面是隨機采集的5組數(shù)據(jù)(其中表示飲酒人數(shù),(升)表示飲酒量):,,,,.
(1)求由這5組數(shù)據(jù)得到的關(guān)于的回歸直線方程;
(2)小王約了5位朋友一同來飲酒,小王及朋友用量杯共量取了8升啤酒,這時,酒吧服務(wù)生對小王說,根據(jù)他的經(jīng)驗,小王和朋友量取的啤酒可能喝不完,可以考慮再邀請一個或兩個朋友一起來飲酒,會更劃算.試問小王是否該接受服務(wù)生的建議.
參考數(shù)據(jù):回歸直線的方程是,其中
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與拋物線:交于,兩點,且的面積為16(為坐標(biāo)原點).
(1)求的方程;
(2)直線經(jīng)過的焦點且不與軸垂直,與交于,兩點,若線段的垂直平分線與軸交于點,證明:為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com