B
分析:先根據(jù)an=Sn-Sn-1求得n≥2時(shí),數(shù)列的通項(xiàng)公式,a1=S1,由{an}為等差數(shù)列,可推出λ=O,反之,由λ=O,可推出{an}為等差數(shù)列,由充要條件的定義可得答案.
解答:當(dāng)n≥2時(shí),an=Sn-Sn-1=2n+1,∴a2=5,a3=7,
而a1=S1=1+2+a=3+λ,∵{an}為等差數(shù)列,∴d=7-5=2
∴a1=a2-d=3=3+λ,∴λ=0,
即由{an}為等差數(shù)列,可推出λ=O;
由λ=O,可知Sn=n2+2n,同樣有,n≥2時(shí),an=Sn-Sn-1=2n+1,
a1=S1=3,代入an=2n+1也適合,故an=2n+1,(n∈N,n≥1),可得
an+1-an=2(n+1)+1-2n-1=2,為常數(shù),即數(shù)列{an}為等差數(shù)列,
即由λ=O,可推出{an}為等差數(shù)列.
故{an}為等差數(shù)列是λ=O的充要條件.
故選B
點(diǎn)評(píng):本題主要考查了等差數(shù)列的性質(zhì).解題的關(guān)鍵是利用了an=Sn-Sn-1.考查了學(xué)生對(duì)等差數(shù)列通項(xiàng)公式的理解,即充要條件的證明,屬基礎(chǔ)題.