【題目】在△ABC中,角A、B、C所對(duì)的邊分別是a、b、c,已知sinB+sinC=msinA(m∈R),且a2﹣4bc=0.
(1)當(dāng)a=2, 時(shí),求b、c的值;
(2)若角A為銳角,求m的取值范圍.

【答案】
(1)解:由題意得b+c=ma,a2﹣4bc=0.

當(dāng) 時(shí), ,bc=1.

解得


(2)解:

,又由b+c=ma可得m>0,所以


【解析】(1)sinB+sinC=msinA(m∈R),利用正弦定理可得:b+c=ma,且a2﹣4bc=0.a(chǎn)=2, 時(shí),代入解出即可得出.(2)利用余弦定理、不等式的解法即可得出.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用余弦定理的定義的相關(guān)知識(shí)可以得到問題的答案,需要掌握余弦定理:;;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy 中,F(xiàn),A,B 分別為橢圓 的右焦點(diǎn)、右頂點(diǎn)和上頂點(diǎn),若
(1)求a的值;
(2)過點(diǎn)P(0,2)作直線l 交橢圓于M,N 兩點(diǎn),過M 作平行于x 軸的直線交橢圓于另外一點(diǎn)Q,連接NQ ,求證:直線NQ 經(jīng)過一個(gè)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定:點(diǎn)P(x,y)按向量 平移后的點(diǎn)為Q(x+a,y+b).若函數(shù) 的圖象按向量 =(j,k)且|j| 平移后的圖象對(duì)應(yīng)的函數(shù)是 +1.
(1)試求向量 的坐標(biāo);
(2)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知f(2A)+2cos(B+C)=1, ①求角A的大。
②若a=6,求b+c的取值范圍.
另外:最后一小題也可用“余弦定理結(jié)合基本不等式”求解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠每日生產(chǎn)一種大型產(chǎn)品2件,每件產(chǎn)品的投入成本為1000元.產(chǎn)品質(zhì)量為一等品的概率為0.5,二等品的概率為0.4,每件一等品的出廠價(jià)為5000元,每件二等品的出廠價(jià)為4000元,若產(chǎn)品質(zhì)量不能達(dá)到一等品或二等品,除成本不能收回外,每生產(chǎn)1件產(chǎn)品還會(huì)帶來1000元的損失.
(Ⅰ)求在連續(xù)生產(chǎn)的3天中,恰有兩天生產(chǎn)的2件產(chǎn)品都為一等品的概率;
(Ⅱ)已知該廠某日生產(chǎn)的這種大型產(chǎn)品2件中有1件為一等品,求另1件也為一等品的概率;
(Ⅲ)求該廠每日生產(chǎn)這種產(chǎn)品所獲利潤(rùn)ξ(元)的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓 + =1的左焦點(diǎn)為F,直線x=a與橢圓相交于點(diǎn)M、N,當(dāng)△FMN的周長(zhǎng)最大時(shí),△FMN的面積是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位,已知直線l的參數(shù)方程為 ,(t為參數(shù),0<θ<π),曲線C的極坐標(biāo)方程為ρsin2α﹣2cosα=0.
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于A,B兩點(diǎn),當(dāng)θ變化時(shí),求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的公差為2,前n項(xiàng)和為Sn , 且S1 , S2 , S4成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令bn=(﹣1)n1 ,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】程序框圖如圖:如果上述程序運(yùn)行的結(jié)果S的值比2016小,若使輸出的S最大,那么判斷框中應(yīng)填入(
A.k≤10?
B.k≥10?
C.k≤9?
D.k≥9?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) ,若曲線 上存在(x0 , y0),使得f(f(y0))=y0成立,則實(shí)數(shù)m的取值范圍為( )
A.[0,e2﹣e+1]
B.[0,e2+e﹣1]
C.[0,e2+e+1]
D.[0,e2﹣e﹣1]

查看答案和解析>>

同步練習(xí)冊(cè)答案