【題目】規(guī)定:點P(x,y)按向量 平移后的點為Q(x+a,y+b).若函數(shù) 的圖象按向量 =(j,k)且|j| 平移后的圖象對應(yīng)的函數(shù)是 +1.
(1)試求向量 的坐標(biāo);
(2)在△ABC中,角A,B,C所對的邊分別為a,b,c,已知f(2A)+2cos(B+C)=1, ①求角A的大。
②若a=6,求b+c的取值范圍.
另外:最后一小題也可用“余弦定理結(jié)合基本不等式”求解.

【答案】
(1)解:函數(shù) 的圖象按向量 =(j,k)且|j| 平移后的圖象對應(yīng)的函數(shù)是 +1=sin (x+ )+1.

=( ,1).


(2)解:①在△ABC中,

∵已知f(2A)+2cos(B+C)=sin (2A+ )+1﹣2cosA=1,

∴sin(A+ )﹣2cosA=0,

即sinAcos +cosAsin =2cosA,∴tanA= ,∴A=

②△ABC中,∵由正弦定理可得 = = = ,∴b=4 sinB,c=4 sinC,

∴b+c=4 (sinB+sinC)=4 [sinB+sin( ﹣B)]

=4 (sinB+sin cosB﹣cos sinB)=4 sinB+ cosB)

=12( sinB+ cosB)=12sin(B+ ).

∵0<B< ,∴ <B+ ,

∴sin(B+ )∈( ,1],∴b+c=12sin(B+ )∈(6,12].


【解析】(1)由題意利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.(2)①利用同角三角函數(shù)的基本關(guān)系,兩角和差的余弦公式,求得tanA的值,可得A的值.②利用正弦定理,三角恒等變換化簡b+c為 12sin(B+ ),再利用正弦函數(shù)的定義域和值域,求得 12sin(B+ )的值域.
【考點精析】利用函數(shù)y=Asin(ωx+φ)的圖象變換對題目進(jìn)行判斷即可得到答案,需要熟知圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1 + =1(b>0)的左、右焦點分別為F1、F2 , 點F2也為拋物線C2:y2=8x的焦點,過點F2的直線l交拋物線C2于A,B兩點.
(Ⅰ)若點P(8,0)滿足|PA|=|PB|,求直線l的方程;
(Ⅱ)T為直線x=﹣3上任意一點,過點F1作TF1的垂線交橢圓C1于M,N兩點,求 的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)為偶函數(shù),當(dāng)x<0時,f(x)=ln(﹣x)﹣ax.若直線y=x與曲線y=f(x)至少有兩個交點,則實數(shù)a的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某經(jīng)銷商從外地水產(chǎn)養(yǎng)殖廠購進(jìn)一批小龍蝦,并隨機(jī)抽取40只進(jìn)行統(tǒng)計,按重量分類統(tǒng)計結(jié)果如圖:
(1)記事件A為:“從這批小龍蝦中任取一只,重量不超過35g的小龍蝦”,求P(A)的估計值;
(2)若購進(jìn)這批小龍蝦100千克,試估計這批小龍蝦的數(shù)量;
(3)為適應(yīng)市場需求,了解這批小龍蝦的口感,該經(jīng)銷商將這40只小龍蝦分成三個等級,如下表:

等級

一等品

二等品

三等品

重量(g)

[5,25)

[25,45)

[45,55]

按分層抽樣抽取10只,再隨機(jī)抽取3只品嘗,記X為抽到二等品的數(shù)量,求抽到二級品的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex(x﹣b)(b∈R).若存在x∈[ ,2],使得f(x)+xf′(x)>0,則實數(shù)b的取值范圍是(
A.(﹣∞,
B.(﹣∞,
C.(﹣ ,
D.( ,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)).以O(shè)為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2acosθ(a>0),且曲線C與直線l有且僅有一個公共點.
(Ⅰ)求a;
(Ⅱ)設(shè)A、B為曲線C上的兩點,且∠AOB= ,求|OA|+|OB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸入n=5,則輸出的S值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A、B、C所對的邊分別是a、b、c,已知sinB+sinC=msinA(m∈R),且a2﹣4bc=0.
(1)當(dāng)a=2, 時,求b、c的值;
(2)若角A為銳角,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=2x﹣ex+1.
(1)求f(x)的最大值;
(2)已知x∈(0,1),af(x)<tanx,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案