設(shè)a是一個各位數(shù)字都不是0且沒有重復(fù)數(shù)字三位數(shù),將組成a的3個數(shù)字按從小到大排成的三位數(shù)記為I(a),按從大到小排成的三位數(shù)記為D(a)(例如a=815,則I(a)=158,D(a)=851),閱讀如圖所示的程序框圖,運行相應(yīng)的程序,任意輸入一個a,輸出的結(jié)果b=
 
考點:程序框圖
專題:計算題,算法和程序框圖
分析:給出一個三位數(shù)的a值,實驗?zāi)M運行程序,直到滿足條件,確定輸出的a值,可得答案.
解答: 解:由程序框圖知:例當(dāng)a=123,第一次循環(huán)a=123,b=321-123=198;
第二次循環(huán)a=198,b=981-189=792;
第三次循環(huán)a=792,b=972-279=693;
第四次循環(huán)a=693,b=963-369=594;
第五次循環(huán)a=594,b=954-459=495;
第六次循環(huán)a=495,b=954-459=495,
滿足條件a=b,跳出循環(huán)體,輸出b=495.
故答案為:495.
點評:本題通過新定義題型考查了循環(huán)結(jié)構(gòu)的程序框圖,根據(jù)框圖的流程模擬運行程序是解答此類問題的常用方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-ax2-bx-1,其中a,b∈R,e=2.71828…為自然對數(shù)的底數(shù).
(1)設(shè)g(x)是函數(shù)f(x)的導(dǎo)函數(shù),求函數(shù)g(x)在區(qū)間[0,1]上的最小值;
(2)若f(1)=0,函數(shù)f(x)在區(qū)間(0,1)內(nèi)有零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C1的參數(shù)方程是
x=
t
y=
3t
3
(t為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程是ρ=2,則C1與C2交點的直角坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某項研究表明:在考慮行車安全的情況下,某路段車流量F(單位時間內(nèi)經(jīng)過測量點的車輛數(shù),單位:輛/小時)與車流速度v(假設(shè)車輛以相同速度v行駛,單位:米/秒)、平均車長l(單位:米)的值有關(guān),其公式為F=
76000v
v2+18v+20l

(Ⅰ)如果不限定車型,l=6.05,則最大車流量為
 
輛/小時;
(Ⅱ)如果限定車型,l=5,則最大車流量比(Ⅰ)中的最大車流量增加
 
輛/小時.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}為等比數(shù)列,a2+a3=1,a3+a4=-2,則a5+a6+a7=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)為奇函數(shù)的是(  )
A、2x-
1
2x
B、x3sinx
C、2cosx+1
D、x2+2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
3
sin
πx
m
,若存在f(x)的極值點x0滿足x02+[f(x0)]2<m2,則m的取值范圍是(  )
A、(-∞,-6)∪(6,+∞)
B、(-∞,-4)∪(4,+∞)
C、(-∞,-2)∪(2,+∞)
D、(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集為R,集合A={x|x2-9<0},B={x|-1<x≤5},則A∩(∁RB)=( 。
A、(-3,0)
B、(-3,-1)
C、(-3,-1]
D、(-3,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若tanα>0,則(  )
A、sinα>0
B、cosα>0
C、sin2α>0
D、cos2α>0

查看答案和解析>>

同步練習(xí)冊答案