【題目】函數(shù)y=2sin( ﹣2x),x∈[0,π])為增函數(shù)的區(qū)間是( )
A.[0, ]
B.[ , ]
C.[ , ]
D.[ ,π]
【答案】C
【解析】解答:由y=2sin( ﹣2x)=﹣2sin(2x﹣ )其增區(qū)間可由y=2sin(2x﹣ )的減區(qū)間得到, 即2kπ+ ≤2x﹣ ≤2kπ+ ,k∈Z
∴kπ+ ≤x≤kπ+ ,k∈Z.
令k=0, ≤x≤ ,
故選C.
分析:先根據(jù)誘導(dǎo)公式進(jìn)行化簡(jiǎn),再由復(fù)合函數(shù)的單調(diào)性可知y=﹣2sin(2x﹣ )的增區(qū)間可由y=2sin(2x﹣ )的減區(qū)間得到,再由正弦函數(shù)的單調(diào)性可求出x的范圍,最后結(jié)合函數(shù)的定義域可求得答案.
【考點(diǎn)精析】利用正弦函數(shù)的單調(diào)性和函數(shù)y=Asin(ωx+φ)的圖象變換對(duì)題目進(jìn)行判斷即可得到答案,需要熟知正弦函數(shù)的單調(diào)性:在上是增函數(shù);在上是減函數(shù);圖象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2ax+5(a>1),
(1)若f(x)的定義域和值域均是[1,a],求實(shí)數(shù)a的值;
(2)若f(x)在區(qū)間(﹣∞,2]上是減函數(shù),且對(duì)任意的x∈[1,a+1],都有f(x)≤0,求實(shí)數(shù)a的取值范圍;
(3)若g(x)=2x+log2(x+1),且對(duì)任意的x∈[0,1],都存在x0∈[0,1],使得f(x0)=g(x)成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=( )x , 函數(shù)g(x)=log x.
(1)若g(ax2+2x+1)的定義域?yàn)镽,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)x∈[( )t+1 , ( )t]時(shí),求函數(shù)y=[g(x)]2﹣2g(x)+2的最小值h(t);
(3)是否存在非負(fù)實(shí)數(shù)m,n,使得函數(shù)y=log f(x2)的定義域?yàn)閇m,n],值域?yàn)閇2m,2n],若存在,求出m,n的值;若不存在,則說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知銷售“筆記本電腦”和“臺(tái)式電腦”所得的利潤(rùn)分別是P(單位:萬(wàn)元)和Q(單位:萬(wàn)元),它們與進(jìn)貨資金t(單位:萬(wàn)元)的關(guān)系有經(jīng)驗(yàn)公式P= t和Q= .某商場(chǎng)決定投入進(jìn)貨資金50萬(wàn)元,全部用來(lái)購(gòu)入這兩種電腦,那么該商場(chǎng)應(yīng)如何分配進(jìn)貨資金,才能使銷售電腦獲得的利潤(rùn)y(單位:萬(wàn)元)最大?最大利潤(rùn)是多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知分別為橢圓的上、下焦點(diǎn), 是拋物線的焦點(diǎn),點(diǎn)是與在第二象限的交點(diǎn),且.
(1)求橢圓的方程;
(2)與圓相切的直線交橢圓于,
若橢圓上一點(diǎn)滿足,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
若時(shí),求函數(shù)的單調(diào)區(qū)間;
若,則當(dāng)時(shí),函數(shù)的圖像是否總存在直線上方?請(qǐng)寫出判斷過(guò)程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)= ,x∈R.
(1)求證:對(duì)一切實(shí)數(shù)x,f(x)=f(1﹣x)恒為定值.
(2)計(jì)算:f(﹣6)+f(﹣5)+f(﹣4)+f(﹣3)+…+f(0)+…+f(6)+f(7).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題正確的是( )
A.在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,則a>b是cos A<cos B的充要條件
B.命題p:對(duì)任意的x∈R,x2+x+1>0,則¬p:對(duì)任意的x∈R,x2+x+1≤0
C.已知p: >0,則¬p: ≤0
D.存在實(shí)數(shù)x∈R,使sin x+cos x= 成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,設(shè)O是平行四邊形ABCD的兩條對(duì)角線AC,BD的交點(diǎn),下列向量組:
① 與 ;② 與 ;
③ 與 ;④ 與 .
其中可作為這個(gè)平行四邊形所在平面的一組基底的是( ).
A.①②
B.③④
C.①③
D.①④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com