13.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩個(gè)焦點(diǎn)是F1,F(xiàn)2,點(diǎn)P($\sqrt{2}$,1)在橢圓C上,且|PF1|+|PF2|=4
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為Q,M是橢圓C上一點(diǎn),直線MP和MQ與x軸分別相交于點(diǎn)E,F(xiàn),O為原點(diǎn).證明:|OE|•|OF|為定值.

分析 (Ⅰ)橢圓的定義,得|PF1|+|PF2|=2a=4,即a=2,將點(diǎn)P($\sqrt{2}$,1)的坐標(biāo)代入$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{^{2}}=1$,解得:b=$\sqrt{2}$即可求得橢圓C的方程;
(Ⅱ)由題意可知:設(shè)M(x0,y0),則有x02+2y02=4,直線MP的方程為y-1=$\frac{{y}_{0}-1}{{x}_{0}-\sqrt{2}}$(x-$\sqrt{2}$),令y=0,得x=$\frac{\sqrt{2}{y}_{0}-{x}_{0}}{{y}_{0}-1}$,從而丨OE丨=丨$\frac{\sqrt{2}{y}_{0}-{x}_{0}}{{y}_{0}-1}$丨.,同理即可求得丨OF丨=丨$\frac{\sqrt{2}{y}_{0}+{x}_{0}}{{y}_{0}+1}$丨,則丨OE丨•丨OF丨=丨$\frac{2{y}_{0}^{2}-{x}_{0}^{2}}{{y}_{0}^{2}-1}$丨=丨$\frac{2{y}_{0}^{2}-(4-2{y}_{0}^{2})}{{y}_{0}^{2}-1}$丨=4.

解答 解:(Ⅰ)由橢圓的定義,得|PF1|+|PF2|=2a=4,即a=2.[(2分)]
將點(diǎn)P($\sqrt{2}$,1)的坐標(biāo)代入$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{^{2}}=1$,得$\frac{2}{4}+\frac{1}{^{2}}=1$,解得:b=$\sqrt{2}$.[(4分)]
∴橢圓C的方程是$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$.[(5分)]
(Ⅱ)證明:由Q關(guān)于x軸于P對(duì)稱,得Q($\sqrt{2}$,-1).
設(shè)M(x0,y0),則有x02+2y02=4,x0≠$\sqrt{2}$,y0≠±1.[(6分)]
直線MP的方程為y-1=$\frac{{y}_{0}-1}{{x}_{0}-\sqrt{2}}$(x-$\sqrt{2}$),[(7分)]
令y=0,得x=$\frac{\sqrt{2}{y}_{0}-{x}_{0}}{{y}_{0}-1}$,[(8分)]
∴丨OE丨=丨$\frac{\sqrt{2}{y}_{0}-{x}_{0}}{{y}_{0}-1}$丨.
直線MQ的方程為:y+1=$\frac{{y}_{0}+1}{{x}_{0}-\sqrt{2}}$(x-$\sqrt{2}$),[(9分)]
令y=0,得x=$\frac{\sqrt{2}{y}_{0}+{x}_{0}}{{y}_{0}+1}$,[(10分)]
∴丨OF丨=丨$\frac{\sqrt{2}{y}_{0}+{x}_{0}}{{y}_{0}+1}$丨.
∴丨OE丨•丨OF丨=丨$\frac{\sqrt{2}{y}_{0}-{x}_{0}}{{y}_{0}-1}$丨•丨$\frac{\sqrt{2}{y}_{0}+{x}_{0}}{{y}_{0}+1}$丨=丨$\frac{2{y}_{0}^{2}-{x}_{0}^{2}}{{y}_{0}^{2}-1}$丨=丨$\frac{2{y}_{0}^{2}-(4-2{y}_{0}^{2})}{{y}_{0}^{2}-1}$丨=4[(12分)]
∴丨OE丨•丨OF丨=4
丨OE丨•丨OF丨為定值.[(14分)]

點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系的應(yīng)用,考查三角形的面積公式,直線的點(diǎn)斜式方程,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知數(shù)列{an}的前n項(xiàng)和為Sn,且${S_n}={n^2}+n$,則a3=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{sinx,x<1}\\{{x^3}-9{x^2}+25x+a,x≥1}\end{array}}\right.$,若函數(shù)f(x)的圖象與直線y=x有三個(gè)不同的公共點(diǎn),則實(shí)數(shù)a的取值集合為{-20,-16}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.橢圓$\frac{x^2}{12}+\frac{y^2}{4}=1$的左、右焦點(diǎn)分別為F1,F(xiàn)2,過焦點(diǎn)F1的直線交該橢圓于A,B兩點(diǎn),若△ABF2的內(nèi)切圓面積為π,A,B兩點(diǎn)的坐標(biāo)分別為(x1,y1),(x2,y2),則|y1-y2|的值為$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.某四棱錐的三視圖如圖所示,該四棱錐的表面積是( 。
A.20+2$\sqrt{5}$B.14+4$\sqrt{5}$C.26D.12+2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.定義在區(qū)間(-1,1)上的函數(shù)f(x)滿足:對(duì)任意的x,y∈(-1,1),都有f(x)+f(y)=f($\frac{x+y}{1+xy}$),且當(dāng)x∈(-1,0),有f(x)>0.
(1)判斷f(x)在區(qū)間(-1,1)上的奇偶性,并給出理由;
(2)判斷f(x)在區(qū)間(-1,1)上的單調(diào)性,并給出證明;
(3)已知f($\frac{1}{2}$)=1,解不等式f(2x+1)+2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,在直三棱柱ABC-A1B1C1中,AC=BC,F(xiàn)為A1B1的中點(diǎn).求證:
(1)B1C∥平面FAC1;
(2)平面FAC1⊥平面ABB1A1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知圓C1:x2+y2-2ax+4y+a2-5=0和圓C2:x2+y2-2x-2y+1=0
(1)當(dāng)兩圓外離時(shí),求實(shí)數(shù)a的取值范圍
(2)已知P是直線3x+4y+8=0上的動(dòng)點(diǎn),PA,PB是圓C2的切線,A,B是切點(diǎn),求四邊形PAC2B面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)$f(x)=\left\{\begin{array}{l}1(1≤x≤2)\\ \frac{1}{2}{x^2}-1\;(2<x≤3)\end{array}\right.$,對(duì)任意的實(shí)數(shù)a,記h(a)=max{f(x)-ax|x∈[1,3]}-min{f(x)-ax|x∈[1,3]}.
(1)h(0)=$\frac{5}{2}$.
(2)求h(a)的解析式及最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案