【題目】設(shè)函數(shù) ,其中[x]表示不超過x的最大整數(shù),若直線y=kx+k(k>0)與函數(shù)y=f(x)的圖象恰有三個(gè)不同的交點(diǎn),則k的取值范圍是

【答案】[ ,
【解析】解:∵函數(shù) , ∴函數(shù)的圖象如下圖所示:

∵y=kx+k=k(x+1),故函數(shù)圖象一定過(﹣1,0)點(diǎn)
若f(x)=kx+k有三個(gè)不同的根,
則y=kx+k與y=f(x)的圖象有三個(gè)交點(diǎn)
當(dāng)y=kx+k過(2,1)點(diǎn)時(shí),k= ,
當(dāng)y=kx+k過(3,1)點(diǎn)時(shí),k=
故f(x)=kx+k有三個(gè)不同的根,則實(shí)數(shù)k的取值范圍是[
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的零點(diǎn)與方程根的關(guān)系的相關(guān)知識(shí),掌握二次函數(shù)的零點(diǎn):(1)△>0,方程 有兩不等實(shí)根,二次函數(shù)的圖象與 軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn);(2)△=0,方程 有兩相等實(shí)根(二重根),二次函數(shù)的圖象與 軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn);(3)△<0,方程 無實(shí)根,二次函數(shù)的圖象與 軸無交點(diǎn),二次函數(shù)無零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)函數(shù)f(x),如果對(duì)任意一個(gè)三角形,只要它的三邊長(zhǎng)a,b,c都在f(x)的定義域內(nèi),就有f(a),f(b),f(c)也是某個(gè)三角形的三邊長(zhǎng),則稱f(x)為“三角保型函數(shù)”,給出下列函數(shù): ①f(x)= ;②f(x)=x2;③f(x)=2x;④f(x)=lgx,
其中是“三角保型函數(shù)”的是(
A.①②
B.①③
C.②③④
D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)的定義域?yàn)镽,它的導(dǎo)函數(shù)y=f′(x)的部分圖象如圖所示,則下面結(jié)論正確的是(
A.在(1,2)上函數(shù)f(x)為增函數(shù)
B.在(3,4)上函數(shù)f(x)為減函數(shù)
C.在(1,3)上函數(shù)f(x)有極大值
D.x=3是函數(shù)f(x)在區(qū)間[1,5]上的極小值點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,g(x)=2ln(x+m).
(1)當(dāng)m=0,存在x0∈[ ,e](e為自然對(duì)數(shù)的底數(shù)),使 ,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=m=1時(shí),設(shè)H(x)=xf(x)+g(x),在H(x)的圖象上是否存在不同的兩點(diǎn)A(x1 , y1),B(x2 , y2)(x1>x2>﹣1),使得H(x1)﹣H(x2)= ?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】偶函數(shù)y=f(x)在區(qū)間(﹣∞,﹣1]上是增函數(shù),則下列不等式成立的是(
A.f(﹣1)>f(
B.f( )>f(﹣ )??
C.f(4)>f(3)
D.f(﹣ )>f(

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是R上的奇函數(shù),且當(dāng)x∈[0,+∞)時(shí),f(x)=x(x+ ).求:
(1)f(﹣8);
(2)f(x)在R上的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一條筆直公路上有A,B兩地,甲騎自行車從A地到B地,乙騎著摩托車從B地到A地,到達(dá)A地后立即按原路返回,如圖是甲乙兩人離A地的距離與行駛時(shí)間之間的函數(shù)圖象,根據(jù)圖象解答以下問題:

直接寫出,x之間的函數(shù)關(guān)系式不必寫過程,求出點(diǎn)M的坐標(biāo),并解釋該點(diǎn)坐標(biāo)所表示的實(shí)際意義;

若兩人之間的距離不超過5km時(shí),能夠用無線對(duì)講機(jī)保持聯(lián)系,求在乙返回過程中有多少分鐘甲乙兩人能夠用無線對(duì)講機(jī)保持聯(lián)系;

若甲乙兩人離A地的距離之積為,求出函數(shù)的表達(dá)式,并求出它的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙、丁四人進(jìn)行選擇題解題比賽,已知每個(gè)選擇題選擇正確得分,否則得分.其測(cè)試結(jié)果如下:甲解題正確的個(gè)數(shù)小于乙解題正確的個(gè)數(shù),乙解題正確的個(gè)數(shù)小于丙解題正確的個(gè)數(shù),丙解題正確的個(gè)數(shù)小于丁解題正確的個(gè)數(shù);且丁解題正確的個(gè)數(shù)的倍小于甲解題正確的個(gè)數(shù)的倍,則這四人測(cè)試總得分?jǐn)?shù)最少為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為考察某種藥物預(yù)防疾病的效果,進(jìn)行動(dòng)物試驗(yàn),調(diào)查了 105 個(gè)樣本,統(tǒng)計(jì)結(jié)果為:服藥的共有 55 個(gè)樣本,服藥但患病的仍有 10 個(gè)樣本,沒有服藥且未患病的有 30個(gè)樣本.

(1)根據(jù)所給樣本數(shù)據(jù)完成 列聯(lián)表中的數(shù)據(jù);

(2)請(qǐng)問能有多大把握認(rèn)為藥物有效?

(參考公式:獨(dú)立性檢驗(yàn)臨界值表

概率

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

患病

不患病

合計(jì)

服藥

沒服藥

合計(jì)

查看答案和解析>>

同步練習(xí)冊(cè)答案