(12分)已知數(shù)列的前n項和為,且,(=1,2,3…)

(1)求數(shù)列的通項公式;

(2)記,求

 

【答案】

(1);(2)。

【解析】

試題分析:(1)∵    

∴ 當時,………………..2分

   

……………4分

  ,

    ………………6分

(2)

 ①…………………7分

 ②………………8分

①-②得………9分

     …………………10分

                  ………………………12分

考點:等比數(shù)列的性質(zhì);等比數(shù)列的通項公式;數(shù)列前n項和的求法。

點評:我們要熟練掌握求數(shù)列通項公式的方法。公式法是求數(shù)列通項公式的基本方法之一,常用的公式有:等差數(shù)列的通項公式、等比數(shù)列的通項公式及公式。此題的第一問求數(shù)列的通項公式就是用公式,用此公式要注意討論的情況。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列的前n項和為Sn=4n2+1,則a1和a10的值分別為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列的前n項和為Sn,且滿足an=
1
2
Sn+1(n∈N*)

(1)求數(shù)列{an}的通項公式;
(2)若bn=log2an,cn=
1
bnbn+1
,且數(shù)列{cn}的前n項和為Tn,求Tn的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列的前N項和為

(1)證明:數(shù)列是等比數(shù)列;

(2)對求使不等式恒成立的自然數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆福建省高二下學期期末考試數(shù)學(文) 題型:解答題

(12分)已知數(shù)列的前n項和為且滿足=2+n (n>1且n∈

(1)求數(shù)列的通項公式和前n項的和

(2)設,求使得不等式成立的最小正整數(shù)n的值

 

查看答案和解析>>

科目:高中數(shù)學 來源:陜西省漢臺區(qū)2009-2010學年高二第二學期期末考試(數(shù)學文)doc 題型:解答題

(本小題滿分14分)

已知數(shù)列的前n項和為,且

(1)試計算,并猜想的表達式;

(2) 證明你的猜想,并求出的表達式。

 

查看答案和解析>>

同步練習冊答案