已知雙曲線實(shí)軸在軸,且實(shí)軸長為2,離心率, L是過定點(diǎn)的直線.
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)判斷L能否與雙曲線交于,兩點(diǎn),且線段恰好以點(diǎn)為中點(diǎn),若存在,求出直線L的方程,若不存,說明理由.
(1)(2)不存在過點(diǎn)P的直線L與雙曲線有兩交點(diǎn)A、B,且線段AB以點(diǎn)P為中點(diǎn)
【解析】
試題分析:(1)∵2a="2" ,∴a=1,又,∴c=,
∴,
∴標(biāo)準(zhǔn)方程為:.
(2)①:若過點(diǎn)P的直線斜率不存在,則L的方程為:,
此時(shí)L與雙曲線只有一個(gè)交點(diǎn),不滿足題意.
②: 若過點(diǎn)P的直線斜率存在且設(shè)為,則L的方程可設(shè)為:,
設(shè),AB的中點(diǎn),
由得, ①
顯然,要有兩個(gè)不同的交點(diǎn),則.所以,
要以P為中點(diǎn),則有,解得,
當(dāng)時(shí),方程①為:,該方程無實(shí)數(shù)根,即L不會(huì)與雙曲線有交點(diǎn),
所以,不存在過點(diǎn)P的直線L與雙曲線有兩交點(diǎn)A、B,且線段AB以點(diǎn)P為中點(diǎn).
考點(diǎn):本小題主要雙曲線的標(biāo)準(zhǔn)方程,雙曲線的性質(zhì)和直線與雙曲線的位置關(guān)系.
點(diǎn)評(píng):每年高考都會(huì)考查圓錐曲線問題,此類題目一般運(yùn)算量較大,主要考查學(xué)生的運(yùn)算求解能力和分析問題、解決問題的能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
4 |
3 |
9 |
5 |
FM |
FN |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
9 |
y2 |
16 |
x2 |
9 |
y2 |
16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知雙曲線實(shí)軸在軸,且實(shí)軸長為2,離心率, L是過定點(diǎn)的直線.
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)判斷L能否與雙曲線交于,兩點(diǎn),且線段恰好以點(diǎn)為中點(diǎn),若存在,求出直線L的方程,若不存,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com