【題目】已知拋物線的焦點(diǎn)為,準(zhǔn)線為,是上一點(diǎn),直線與拋物線交于,兩點(diǎn),若,則=
A.B.
C.D.
【答案】B
【解析】
先根據(jù)題意寫出直線的方程,再將直線的方程與拋物線y2=2x的方程組成方程組,消去y得到關(guān)于x的二次方程,最后利用根與系數(shù)的關(guān)系結(jié)合拋物線的定義即可求線段AB的長.
解:拋物線C:y2=2x的焦點(diǎn)為F(,0),準(zhǔn)線為l:x=﹣,設(shè)M(x1,y1),N(x2,y2),M,N到準(zhǔn)線的距離分別為dM,dN,
由拋物線的定義可知|MF|=dM=x1+,|NF|=dN=x2+,于是|MN|=|MF|+|NF|=x1+x2+1.
∵,則,易知:直線MN的斜率為±,
∵F(,0),
∴直線PF的方程為y=±(x﹣),
將y=±(x﹣),代入方程y2=2x,得3(x﹣)2=2x,化簡(jiǎn)得12x2﹣20x+3=0,
∴x1+x2,于是|MN|=x1+x2+11
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)生在開學(xué)季準(zhǔn)備銷售一種文具盒進(jìn)行試創(chuàng)業(yè),在一個(gè)開學(xué)季內(nèi),每售出盒該產(chǎn)品獲利潤元,未售出的產(chǎn)品,每盒虧損元.根據(jù)歷史資料,得到開學(xué)季市場(chǎng)需求量的頻率分布直方圖,如圖所示.該同學(xué)為這個(gè)開學(xué)季購進(jìn)了盒該產(chǎn)品,以(單位:盒,)表示這個(gè)開學(xué)季內(nèi)的市場(chǎng)需求量,(單位:元)表示這個(gè)開學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤.
(1)根據(jù)直方圖估計(jì)這個(gè)開學(xué)季內(nèi)市場(chǎng)需求量的眾數(shù)和平均數(shù);
(2)將表示為的函數(shù);
(3)根據(jù)直方圖估計(jì)利潤不少于元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市創(chuàng)衛(wèi)辦為了了解該市開展創(chuàng)衛(wèi)活動(dòng)的成效,對(duì)市民進(jìn)行了一次創(chuàng)衛(wèi)滿意程度測(cè)試,根據(jù)測(cè)試成績?cè)u(píng)定“合格”、“不合格”兩個(gè)等級(jí),同時(shí)對(duì)相應(yīng)等級(jí)進(jìn)行量化:“合格”計(jì)5分,“不合格”計(jì)0分,現(xiàn)隨機(jī)抽取部分市民的回答問卷,統(tǒng)計(jì)結(jié)果及對(duì)應(yīng)的頻率分布直方圖如圖所示:
等級(jí) | 不合格 | 合格 | ||
得分 | ||||
頻數(shù) | 6 | 24 |
(1)求的值;
(2)按照分層抽樣的方法,從評(píng)定等級(jí)為“合格”和“不合格”的問卷中隨機(jī)抽取10份進(jìn)行問題跟蹤調(diào)研,現(xiàn)再從這10份問卷中任選4份,記所選4份問卷的量化總分為,求的分布列及數(shù)學(xué)期望;
(3)某評(píng)估機(jī)構(gòu)以指標(biāo)(,其中表示的方差)來評(píng)估該市創(chuàng)衛(wèi)活動(dòng)的成效.若,則認(rèn)定創(chuàng)衛(wèi)活動(dòng)是有效的;否則認(rèn)為創(chuàng)衛(wèi)活動(dòng)無效,應(yīng)該調(diào)整創(chuàng)衛(wèi)活動(dòng)方案.在(2)的條件下,判斷該市是否應(yīng)該調(diào)整創(chuàng)衛(wèi)活動(dòng)方案?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在四棱錐中,底面是邊長為的正方形,是正三角形,CD平面PAD,E,F,G,O分別是PC,PD,BC,AD 的中點(diǎn).
(Ⅰ)求證:PO平面;
(Ⅱ)求平面EFG與平面所成銳二面角的大;
(Ⅲ)線段上是否存在點(diǎn),使得直線與平面所成角為,若存在,求線段的長度;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有四個(gè)函數(shù)①y=x|sinx|,②y=xcos|x|,③,④y=xln|x|的部分圖象如下,但順序被打亂,則按照?qǐng)D象從左到右的順序,對(duì)應(yīng)的函數(shù)序號(hào)正確的一組是( )
A.①④②③B.①④③②C.③②④①D.③④②①
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年11月份,全國工業(yè)生產(chǎn)者出廠價(jià)格同比下降,環(huán)比下降某企業(yè)在了解市場(chǎng)動(dòng)態(tài)之后,決定根據(jù)市場(chǎng)動(dòng)態(tài)及時(shí)作出相應(yīng)調(diào)整,并結(jié)合企業(yè)自身的情況作出相應(yīng)的出廠價(jià)格,該企業(yè)統(tǒng)計(jì)了2019年1~10月份產(chǎn)品的生產(chǎn)數(shù)量(單位:萬件)以及銷售總額(單位:十萬元)之間的關(guān)系如下表:
2.08 | 2.12 | 2.19 | 2.28 | 2.36 | 2.48 | 2.59 | 2.68 | 2.80 | 2.87 | |
4.25 | 4.37 | 4.40 | 4.55 | 4.64 | 4.75 | 4.92 | 5.03 | 5.14 | 5.26 |
(1)計(jì)算的值;
(2)計(jì)算相關(guān)系數(shù),并通過的大小說明與之間的相關(guān)程度;
(3)求與的線性回歸方程,并推測(cè)當(dāng)產(chǎn)量為3.2萬件時(shí)銷售額為多少.(該問中運(yùn)算結(jié)果保留兩位小數(shù))
附:回歸直線方程中的斜率和截距的最小二乘估計(jì)公式分別為,;
相關(guān)系數(shù).
參考數(shù)據(jù):,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為常數(shù),).
(Ⅰ)若是函數(shù)的一個(gè)極值點(diǎn),求的值;
(Ⅱ)求證:當(dāng)時(shí),在上是增函數(shù);
(Ⅲ)若對(duì)任意的(1,2),總存在,使不等式成立,求實(shí)數(shù)的取范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了提高學(xué)生的身體素質(zhì),某校高一、高二兩個(gè)年級(jí)共336名學(xué)生同時(shí)參與了“我運(yùn)動(dòng),我健康,我快樂”的跳繩、踢毽等系列體育健身活動(dòng).為了了解學(xué)生的運(yùn)動(dòng)狀況,采用分層抽樣的方法從高一、高二兩個(gè)年級(jí)的學(xué)生中分別抽取7名和5名學(xué)生進(jìn)行測(cè)試.下表是高二年級(jí)的5名學(xué)生的測(cè)試數(shù)據(jù)(單位:個(gè)/分鐘):
(1)求高一、高二兩個(gè)年級(jí)各有多少人?
(2)設(shè)某學(xué)生跳繩個(gè)/分鐘,踢毽個(gè)/分鐘.當(dāng),且時(shí),稱該學(xué)生為“運(yùn)動(dòng)達(dá)人”.
①從高二年級(jí)的學(xué)生中任選一人,試估計(jì)該學(xué)生為“運(yùn)動(dòng)達(dá)人”的概率;
②從高二年級(jí)抽出的上述5名學(xué)生中,隨機(jī)抽取3人,求抽取的3名學(xué)生中為“運(yùn)動(dòng)達(dá)人”的人數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com