【題目】已知函數(shù)為常數(shù),.

)若是函數(shù)的一個(gè)極值點(diǎn),求的值;

)求證:當(dāng)時(shí),上是增函數(shù);

)若對(duì)任意的1,2),總存在,使不等式成立,求實(shí)數(shù)的取范圍.

【答案】.

)略

)實(shí)數(shù)的取值范圍為.

【解析】

本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用.以及不等是的求解,和函數(shù)單調(diào)性的判定的綜合運(yùn)用.

1)因?yàn)?/span>

由已知,得, 得到a的值,

2)當(dāng)時(shí),

當(dāng)時(shí),.上是增函數(shù)

3)當(dāng)時(shí),由()知,上的最大值為

于是問題等價(jià)于:對(duì)任意的,不等式恒成立.

利用構(gòu)造函數(shù)得到結(jié)論.

解:……………1

)由已知,得,……3

經(jīng)檢驗(yàn),滿足條件.……………………………………4

)當(dāng)時(shí),…………5

當(dāng)時(shí),.上是增函數(shù)

)當(dāng)時(shí),由()知,上的最大值為

于是問題等價(jià)于:對(duì)任意的,不等式恒成立.

…………………………9

當(dāng)時(shí),有,且在區(qū)間(1,2)上遞減,且,則不可能使恒成立,故必有…………11

當(dāng),且

,可知在區(qū)間上遞減,在此區(qū)間上有,與恒成立矛盾,故,這時(shí),即在(1,2)上遞增,恒有滿足題設(shè)要求.

,即,所以,實(shí)數(shù)的取值范圍為.……………………14

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近幾年來我國電子商務(wù)行業(yè)發(fā)展迅猛,2016年元旦期間,某購物平臺(tái)的銷售業(yè)績高達(dá)918億人民幣,與此同時(shí),相關(guān)管理部門推出了針對(duì)電商的商品和服務(wù)的評(píng)價(jià)體系,現(xiàn)從評(píng)價(jià)系統(tǒng)中選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),對(duì)商品的好評(píng)率為0.6,對(duì)服務(wù)的好評(píng)率為0.75,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為80.

1)完成商品和服務(wù)評(píng)價(jià)的列聯(lián)表,并說明是否可以在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)?

2)若將頻率視為概率,某人在該購物平臺(tái)上進(jìn)行的5次購物中,設(shè)對(duì)商品和服務(wù)全好評(píng)的次數(shù)為隨機(jī)變量.

①求對(duì)商品和服務(wù)全好評(píng)的次數(shù)的分布列(概率用組合數(shù)算式表示);

②求的數(shù)學(xué)期望和方差.

參考數(shù)據(jù)及公式如下:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,準(zhǔn)線為,上一點(diǎn),直線與拋物線交于,兩點(diǎn),若,則=

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的參數(shù)方程為為參數(shù)),在同一平面直角坐標(biāo)系中,將曲線上的點(diǎn)按坐標(biāo)變換得到曲線,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系.設(shè)點(diǎn)的極坐標(biāo)為.

1)求曲線的極坐標(biāo)方程;

2)若過點(diǎn)且傾斜角為的直線與曲線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的右焦點(diǎn)為,右頂點(diǎn)為.已知,其中為原點(diǎn), 為橢圓的離心率.

1)求橢圓的方程及離心率的值;

2)設(shè)過點(diǎn)的直線與橢圓交于點(diǎn)不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn).,且,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知由nnN*)個(gè)正整數(shù)構(gòu)成的集合A{a1a2,,an}a1a2an,n≥3),記SAa1+a2+…+an,對(duì)于任意不大于SA的正整數(shù)m,均存在集合A的一個(gè)子集,使得該子集的所有元素之和等于m.

1)求a1,a2的值;

2)求證:a1,a2,an成等差數(shù)列的充要條件是;

3)若SA2020,求n的最小值,并指出n取最小值時(shí)an的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),設(shè)的兩個(gè)不同極值點(diǎn),證明:;

2)設(shè)的兩個(gè)不同零點(diǎn),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)參加項(xiàng)目生產(chǎn)的工人為人,平均每人每年創(chuàng)造利潤萬元.根據(jù)現(xiàn)實(shí)的需要,從項(xiàng)目中調(diào)出人參與項(xiàng)目的售后服務(wù)工作,每人每年可以創(chuàng)造利潤萬元(),項(xiàng)目余下的工人每人每年創(chuàng)造利圖需要提高

1)若要保證項(xiàng)目余下的工人創(chuàng)造的年總利潤不低于原來名工人創(chuàng)造的年總利潤,則最多調(diào)出多少人參加項(xiàng)目從事售后服務(wù)工作?

2)在(1)的條件下,當(dāng)從項(xiàng)目調(diào)出的人數(shù)不能超過總?cè)藬?shù)的時(shí),才能使得項(xiàng)目中留崗工人創(chuàng)造的年總利潤始終不低于調(diào)出的工人所創(chuàng)造的年總利潤,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),曲線 .以為極點(diǎn), 軸的非負(fù)半軸為極軸,與直角坐標(biāo)系取相同的長度單位,建立極坐標(biāo)系.

1)求曲線的極坐標(biāo)方程;

2)射線)與曲線的異于極點(diǎn)的交點(diǎn)為,與曲線的交點(diǎn)為,求.

【答案】(1) 的極坐標(biāo)方程為, 的極坐標(biāo)方程為;(2) .

【解析】試題分析:(1先根據(jù)三角函數(shù)平方關(guān)系消參數(shù)得曲線,再根據(jù)將曲線極坐標(biāo)方程;2代人曲線的極坐標(biāo)方程,再根據(jù).

試題解析:1)曲線的參數(shù)方程為參數(shù))

可化為普通方程

,可得曲線的極坐標(biāo)方程為,

曲線的極坐標(biāo)方程為.

2)射線)與曲線的交點(diǎn)的極徑為,

射線)與曲線的交點(diǎn)的極徑滿足,解得,

所以.

型】解答
結(jié)束】
23

【題目】設(shè)函數(shù)

(1)設(shè)的解集為,求集合

(2)已知為(1)中集合中的最大整數(shù),且(其中,,為正實(shí)數(shù)),求證:

查看答案和解析>>

同步練習(xí)冊答案