【題目】已知函數(shù)(為常數(shù),).
(Ⅰ)若是函數(shù)的一個(gè)極值點(diǎn),求的值;
(Ⅱ)求證:當(dāng)時(shí),在上是增函數(shù);
(Ⅲ)若對(duì)任意的(1,2),總存在,使不等式成立,求實(shí)數(shù)的取范圍.
【答案】(Ⅰ).
(Ⅱ)略
(Ⅲ)實(shí)數(shù)的取值范圍為.
【解析】
本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用.以及不等是的求解,和函數(shù)單調(diào)性的判定的綜合運(yùn)用.
(1)因?yàn)?/span>
由已知,得即, 得到a的值,
(2)當(dāng)時(shí),
當(dāng)時(shí),.又,故在上是增函數(shù)
(3)當(dāng)時(shí),由(Ⅱ)知,在上的最大值為
于是問題等價(jià)于:對(duì)任意的,不等式恒成立.
利用構(gòu)造函數(shù)得到結(jié)論.
解:……………1分
(Ⅰ)由已知,得即,……3分
經(jīng)檢驗(yàn),滿足條件.……………………………………4分
(Ⅱ)當(dāng)時(shí),…………5分
當(dāng)時(shí),.又,故在上是增函數(shù)
(Ⅲ)當(dāng)時(shí),由(Ⅱ)知,在上的最大值為
于是問題等價(jià)于:對(duì)任意的,不等式恒成立.
記
則…………………………9分
當(dāng)時(shí),有,且在區(qū)間(1,2)上遞減,且,則不可能使恒成立,故必有…………11分
當(dāng),且
若,可知在區(qū)間上遞減,在此區(qū)間上有,與恒成立矛盾,故,這時(shí),即在(1,2)上遞增,恒有滿足題設(shè)要求.
,即,所以,實(shí)數(shù)的取值范圍為.……………………14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近幾年來我國電子商務(wù)行業(yè)發(fā)展迅猛,2016年元旦期間,某購物平臺(tái)的銷售業(yè)績高達(dá)918億人民幣,與此同時(shí),相關(guān)管理部門推出了針對(duì)電商的商品和服務(wù)的評(píng)價(jià)體系,現(xiàn)從評(píng)價(jià)系統(tǒng)中選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),對(duì)商品的好評(píng)率為0.6,對(duì)服務(wù)的好評(píng)率為0.75,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為80次.
(1)完成商品和服務(wù)評(píng)價(jià)的列聯(lián)表,并說明是否可以在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)?
(2)若將頻率視為概率,某人在該購物平臺(tái)上進(jìn)行的5次購物中,設(shè)對(duì)商品和服務(wù)全好評(píng)的次數(shù)為隨機(jī)變量.
①求對(duì)商品和服務(wù)全好評(píng)的次數(shù)的分布列(概率用組合數(shù)算式表示);
②求的數(shù)學(xué)期望和方差.
參考數(shù)據(jù)及公式如下:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,準(zhǔn)線為,是上一點(diǎn),直線與拋物線交于,兩點(diǎn),若,則=
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的參數(shù)方程為(為參數(shù)),在同一平面直角坐標(biāo)系中,將曲線上的點(diǎn)按坐標(biāo)變換得到曲線,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系.設(shè)點(diǎn)的極坐標(biāo)為.
(1)求曲線的極坐標(biāo)方程;
(2)若過點(diǎn)且傾斜角為的直線與曲線交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的右焦點(diǎn)為,右頂點(diǎn)為.已知,其中為原點(diǎn), 為橢圓的離心率.
(1)求橢圓的方程及離心率的值;
(2)設(shè)過點(diǎn)的直線與橢圓交于點(diǎn)(不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn).若,且,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知由n(n∈N*)個(gè)正整數(shù)構(gòu)成的集合A={a1,a2,…,an}(a1<a2<…<an,n≥3),記SA=a1+a2+…+an,對(duì)于任意不大于SA的正整數(shù)m,均存在集合A的一個(gè)子集,使得該子集的所有元素之和等于m.
(1)求a1,a2的值;
(2)求證:“a1,a2,…,an成等差數(shù)列”的充要條件是“”;
(3)若SA=2020,求n的最小值,并指出n取最小值時(shí)an的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),設(shè),為的兩個(gè)不同極值點(diǎn),證明:;
(2)設(shè),為的兩個(gè)不同零點(diǎn),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)參加項(xiàng)目生產(chǎn)的工人為人,平均每人每年創(chuàng)造利潤萬元.根據(jù)現(xiàn)實(shí)的需要,從項(xiàng)目中調(diào)出人參與項(xiàng)目的售后服務(wù)工作,每人每年可以創(chuàng)造利潤萬元(),項(xiàng)目余下的工人每人每年創(chuàng)造利圖需要提高
(1)若要保證項(xiàng)目余下的工人創(chuàng)造的年總利潤不低于原來名工人創(chuàng)造的年總利潤,則最多調(diào)出多少人參加項(xiàng)目從事售后服務(wù)工作?
(2)在(1)的條件下,當(dāng)從項(xiàng)目調(diào)出的人數(shù)不能超過總?cè)藬?shù)的時(shí),才能使得項(xiàng)目中留崗工人創(chuàng)造的年總利潤始終不低于調(diào)出的工人所創(chuàng)造的年總利潤,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),曲線: .以為極點(diǎn), 軸的非負(fù)半軸為極軸,與直角坐標(biāo)系取相同的長度單位,建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程;
(2)射線()與曲線的異于極點(diǎn)的交點(diǎn)為,與曲線的交點(diǎn)為,求.
【答案】(1) 的極坐標(biāo)方程為, 的極坐標(biāo)方程為;(2) .
【解析】試題分析:(1)先根據(jù)三角函數(shù)平方關(guān)系消參數(shù)得曲線,再根據(jù)將曲線的極坐標(biāo)方程;(2)將代人曲線的極坐標(biāo)方程,再根據(jù)求.
試題解析:(1)曲線的參數(shù)方程(為參數(shù))
可化為普通方程,
由,可得曲線的極坐標(biāo)方程為,
曲線的極坐標(biāo)方程為.
(2)射線()與曲線的交點(diǎn)的極徑為,
射線()與曲線的交點(diǎn)的極徑滿足,解得,
所以.
【題型】解答題
【結(jié)束】
23
【題目】設(shè)函數(shù).
(1)設(shè)的解集為,求集合;
(2)已知為(1)中集合中的最大整數(shù),且(其中,,為正實(shí)數(shù)),求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com