【題目】如圖,已知,,分別為的中點,,將沿折起,得到四棱錐的中點.

1)證明:平面;

2)當(dāng)正視圖方向與向量的方向相同時,的正視圖為直角三角形,求此時二面角的余弦值.

【答案】1)證明見解析;(2

【解析】

1)根據(jù)題意可知,由三線合一可證明,進(jìn)而由線面垂直的判定可證明平面;

2)先證明,然后以為原點,軸,軸,軸建立空間直角坐標(biāo)系,寫出各個點的坐標(biāo),并求得平面的一個法向量,為平面的一個法向量,即可由二面角的向量求法求得二面角的余弦值.

1)由平面圖可知,,,

所以平面,所以.

因為的中點,,

.

因為,

所以平面.

2)因為的正視圖與全等,所以為直角三角形,故.

為原點,軸,軸,軸建立空間直角坐標(biāo)系如下圖所示,

,,,,

所以,,,

設(shè)平面的一個法向量為,則,

,令,∴,

因為為平面的一個法向量,設(shè)二面角,

所以,

因為二面角為鈍角,所以,

故二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列中,滿足前n項和.

(I)證明: ;

(Ⅱ)證明:

(Ⅲ)證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=

(e為自然對數(shù)的底數(shù)),則f(e)=________,函數(shù)yf(f(x))-1的零點個數(shù)為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在三棱錐中,均為等腰三角形,且,

1)判斷是否成立?并給出證明;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A,B是拋物線上的兩點,且在x軸兩側(cè),若AB的中點為Q,分別過A,B兩點作T的切線,且兩切線相交于點P.

1)求證:直線PQ平行于x軸;

2)若直線AB經(jīng)過拋物線T的焦點,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于的不等式,對于恒成立,則實數(shù)的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】黨的十九大明確把精準(zhǔn)脫貧作為決勝全面建成小康社會必須打好的三大攻堅戰(zhàn)之一,為堅決打贏脫貧攻堅戰(zhàn),某幫扶單位考察了甲乙兩種不同的農(nóng)產(chǎn)品加工生產(chǎn)方式,現(xiàn)對兩種生產(chǎn)方式加工的產(chǎn)品質(zhì)量進(jìn)行測試并打分對比,得到如下數(shù)據(jù):

生產(chǎn)方式甲

分值區(qū)間

頻數(shù)

20

30

100

40

10

生產(chǎn)方式乙

分值區(qū)間

頻數(shù)

25

35

60

50

30

其中產(chǎn)品質(zhì)量按測試指標(biāo)可劃分為:指標(biāo)在區(qū)間上的為特優(yōu)品,指標(biāo)在區(qū)間上的為一等品,指標(biāo)在區(qū)間上的為二等品.

1)用事件表示“按照生產(chǎn)方式甲生產(chǎn)的產(chǎn)品為特優(yōu)品”,估計的概率;

2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷能否有的把握認(rèn)為“特優(yōu)品”與生產(chǎn)方式有關(guān)?

特優(yōu)品

非特優(yōu)品

生產(chǎn)方式甲

生產(chǎn)方式乙

3)根據(jù)打分結(jié)果對甲乙兩種生產(chǎn)方式進(jìn)行優(yōu)劣比較.

附表:

0.10

0.050

0.010

0.001

2.706

3.841

6.635

10.828

參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,且過點. 為橢圓的右焦點, 為橢圓上關(guān)于原點對稱的兩點,連接分別交橢圓于兩點.

⑴求橢圓的標(biāo)準(zhǔn)方程;

⑵若,求的值;

⑶設(shè)直線, 的斜率分別為, ,是否存在實數(shù),使得,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面凸六邊形的邊長相等,其中為矩形,.將,分別沿,折至,,且均在同側(cè)與平面垂直,連接,如圖所示,E,G分別是,的中點.

1)求證:多面體為直三棱柱;

2)求二面角平面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案