【題目】設(shè)F是橢圓C:(a>b>0)的一個焦點,P是橢圓C上的點,圓x2+y2=與線段PF交于A,B兩點,若A,B三等分線段PF,則橢圓C的離心率為( )
A.B.
C.D.
【答案】D
【解析】
取線段PF的中點H,連接OH,OA,由題意可得OH⊥AB,設(shè)|OH|=d,根據(jù)橢圓的定義以及在Rt△OHA中,可得a=5d,在Rt△OHF中,利用勾股定理即可求解.
如圖,取線段PF的中點H,連接OH,OA.
設(shè)橢圓另一個焦點為E,連接PE.
∵A,B三等分線段PF,∴H也是線段AB的中點,即OH⊥AB.
設(shè)|OH|=d,則|PE|=2d,|PF|=2a-2d,|AH|=.
在Rt△OHA中,|OA|2=|OH|2+|AH|2,解得a=5d.
在Rt△OHF中,|FH|=,|OH|=,|OF|=c.
由|OF|2=|OH|2+|FH|2,
化簡得17a2=25c2,.
即橢圓C的離心率為.
故選:D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列有關(guān)命題的說法錯誤的是( )
A.若“p∨q”為假命題,則p,q均為假命題
B.“x=1”是“x≥1”的充分不必要條件
C.“sinx=”的必要不充分條件是“x=”
D.若命題p:x0∈R,x02≥0,則命題¬p:x∈R,x2<0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列五個命題:
①“”是“為R上的增函數(shù)”的充分不必要條件;
②函數(shù)有兩個零點;
③集合A={2,3},B={1,2,3},從A,B中各任意取一個數(shù),則這兩數(shù)之和等于4的概率是;
④動圓C即與定圓相外切,又與y軸相切,則圓心C的軌跡方程是
⑤若對任意的正數(shù)x,不等式 恒成立,則實數(shù)的取值范圍是
其中正確的命題序號是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=a+bx-a-ab(a≠0),當(dāng)時,f(x)>0;當(dāng)時,f(x)<0.
(1)求f(x)在內(nèi)的值域;
(2)若方程在有兩個不等實根,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是衡量空氣污染程度的一個指標(biāo),為了了解市空氣質(zhì)量情況,從年每天的值的數(shù)據(jù)中隨機抽取天的數(shù)據(jù),其頻率分布直方圖如圖所示.將值劃分成區(qū)間、、、,分別稱為一級、二級、三級和四級,統(tǒng)計時用頻率估計概率 .
(1)根據(jù)年的數(shù)據(jù)估計該市在年中空氣質(zhì)量為一級的天數(shù);
(2)如果市對環(huán)境進行治理,經(jīng)治理后,每天值近似滿足正態(tài)分布,求經(jīng)過治理后的值的均值下降率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的參數(shù)方程為(為參數(shù)),,為曲線上的一動點.
(I)求動點對應(yīng)的參數(shù)從變動到時,線段所掃過的圖形面積;
(Ⅱ)若直線與曲線的另一個交點為,是否存在點,使得為線段的中點?若存在,求出點坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)要完成下列三項抽樣調(diào)查:①從罐奶粉中抽取罐進行食品安全衛(wèi)生檢查;②高二年級有名學(xué)生,為調(diào)查學(xué)生的學(xué)習(xí)情況抽取一個容量為的樣本;③從某社區(qū)戶高收入家庭,戶中等收入家庭,戶低收入家庭中選出戶進行消費水平調(diào)查.以下各調(diào)查方法較為合理的是( )
A.①系統(tǒng)抽樣,②簡單隨機抽樣,③分層抽樣
B.①簡單隨機抽樣,②分層抽樣,③系統(tǒng)抽樣
C.①分層抽樣,②系統(tǒng)抽樣,③簡單隨機抽樣
D.①簡單隨機抽樣,②系統(tǒng)抽樣,③分層抽樣
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】進入月份,香港大學(xué)自主招生開始報名,“五校聯(lián)盟”統(tǒng)一對五校高三學(xué)生進行綜合素質(zhì)測試,在所有參加測試的學(xué)生中隨機抽取了部分學(xué)生的成績,得到如圖所示的成績頻率分布直方圖:
(1)估計五校學(xué)生綜合素質(zhì)成績的平均值;
(2)某校決定從本校綜合素質(zhì)成績排名前名同學(xué)中,推薦人參加自主招生考試,若已知名同學(xué)中有名理科生,2名文科生,試求這3人中含文科生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是橢圓與雙曲線的公共焦點,是它們的一個公共點,且,橢圓的離心率為,雙曲線的離心率為,若,則的最小值為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com