已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)設(shè),若在上至少存在一點(diǎn),使得成立,求的范圍.

 

【答案】

(Ⅰ),上單調(diào)遞減,在上單調(diào)遞增;(Ⅱ )的取值范圍為

【解析】

試題分析:(Ⅰ)對(duì)求導(dǎo)來判斷單調(diào)區(qū)間;(Ⅱ)在上至少存在一點(diǎn),使得成立,即不等式上有解,原不等式整理得:),轉(zhuǎn)化為求的最小值問題.

試題解析:(Ⅰ)解: ,解得:上單調(diào)遞減,在上單調(diào)遞增;

(Ⅱ),在上至少存在一點(diǎn),使得成立,即:不等式有解,也即:)有解,記,則,令,,單調(diào)遞增,,即上恒成立,因此,在,在,即單調(diào)遞減,在單調(diào)遞增,,所以,的取值范圍為

方法二:令,則

,

①當(dāng)時(shí),上為增函數(shù),在上為減函數(shù),由題意可知,;

②當(dāng)時(shí),上為增函數(shù),在,上為減函數(shù),,由題意可知

③當(dāng)時(shí),上為增函數(shù),在,上為減函數(shù),,由題意可知,,恒成立,此時(shí)不合題意.

綜上所述,的取值范圍為

考點(diǎn):1、利用導(dǎo)數(shù)求單調(diào)區(qū)間及判斷單調(diào)性,2、帶參數(shù)不等式成立問題,3、利用導(dǎo)數(shù)求最值,.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014屆福建省高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(Ⅰ)求函數(shù)的最小正周期;

(Ⅱ)請(qǐng)用“五點(diǎn)法”作出函數(shù)在區(qū)間上的簡圖.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年甘肅省度高二下學(xué)期第二次檢測考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù).        

(Ⅰ)求的最小值;

(Ⅱ)若對(duì)所有都有,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省高三上學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分15分)

已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若,試分別解答以下兩小題.

(。┤舨坏仁對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍;

(ⅱ)若是兩個(gè)不相等的正數(shù),且,求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省自貢市高三下學(xué)期第三次診斷性檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),.

(1)求曲線f(x)在點(diǎn)A處的切線方程;

(II)討論函數(shù)f(x)的單調(diào)性;

(III)是否存在實(shí)數(shù),使當(dāng)時(shí)恒成立?若存在,求 出實(shí)數(shù)a;若不存在,請(qǐng)說明理由

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:山西省忻州市2009-2010學(xué)年高一第二學(xué)期聯(lián)考試題(B類) 題型:解答題

 

 (本小題滿分12分)

已知函數(shù)

(1)求實(shí)數(shù)的值;

(2)當(dāng)xÎ時(shí),求函數(shù)的值域.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案