已知點P為圓周x2+y2=4的動點,過P點作PH⊥x軸,垂足為H,設線段PH的中點為E,記點E的軌跡方程為C,點A(0,1)

(1)求動點E的軌跡方程C;

(2)若斜率為的另一個交點為B,求△OAB面積的最大值及此時直線l的方程;

(3)是否存在方向向量的直線交與兩個不同的點M,N,且有?若存在,求出k的取值范圍;若不存在,說明理由.

答案:
解析:

  (1)設,則,而點在圓上

  所以,即

  (2)

  而,故當時,面積的最大值為1

  此時,直線的方程為:

  (3)假設存在符合題設條件的直線,設其方程為:

  ,的中點

  于是

  

  、

  而

  故 從而

   而

  故

  可得:、

  由①②得:

  故


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點P為圓周x2+y2=4的動點,過P點作PH⊥x軸,垂足為H,設線段PH的中點為E,記點E的軌跡方程為C,點A(0,1)
(1)求動點E的軌跡方程C;
(2)若斜率為k的直線l經(jīng)過點A(0,1)且與曲線C的另一個交點為B,求△OAB面積的最大值及此時直線l的方程;
(3)是否存在方向向量
a
=(1,k)(k≠0)
的直線l,使得l與曲線C交與兩個不同的點M,N,且有|
AM
|=|
AN
|
?若存在,求出k的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點P為圓周x2+y2=4的動點,過P點作PH⊥x軸,垂足為H,設線段PH的中點為E,記點E的軌跡方程為C,點A(0,1)
(1)求動點E的軌跡方程C;
(2)若斜率為k的直線l經(jīng)過點A(0,1)且與曲線C的另一個交點為B,求△OAB面積的最大值及此時直線l的方程;
(3)是否存在方向向量數(shù)學公式的直線l,使得l與曲線C交與兩個不同的點M,N,且有數(shù)學公式?若存在,求出k的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:0122 期中題 題型:解答題

已知點P為圓周x2+y2=4的動點,過P點作PH⊥x軸,垂足為H,設線段PH的中點為E,記點E的軌跡方程為C,點A(0,1),
(1)求動點E的軌跡方程C;
(2)若斜率為k的直線l經(jīng)過點A(0,1)且與曲線C的另一個交點為B,求△OAB面積的最大值及此時直線l的方程;
(3)是否存在方向向量的直線l,使得l與曲線C交與兩個不同的點M,N,且有?若存在,求出k的取值范圍;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年重慶一中高二(上)期中數(shù)學試卷(文科)(解析版) 題型:解答題

已知點P為圓周x2+y2=4的動點,過P點作PH⊥x軸,垂足為H,設線段PH的中點為E,記點E的軌跡方程為C,點A(0,1)
(1)求動點E的軌跡方程C;
(2)若斜率為k的直線l經(jīng)過點A(0,1)且與曲線C的另一個交點為B,求△OAB面積的最大值及此時直線l的方程;
(3)是否存在方向向量的直線l,使得l與曲線C交與兩個不同的點M,N,且有?若存在,求出k的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年山東省濟寧市鄒城二中高二(上)期中數(shù)學試卷(文科)(解析版) 題型:解答題

已知點P為圓周x2+y2=4的動點,過P點作PH⊥x軸,垂足為H,設線段PH的中點為E,記點E的軌跡方程為C,點A(0,1)
(1)求動點E的軌跡方程C;
(2)若斜率為k的直線l經(jīng)過點A(0,1)且與曲線C的另一個交點為B,求△OAB面積的最大值及此時直線l的方程;
(3)是否存在方向向量的直線l,使得l與曲線C交與兩個不同的點M,N,且有?若存在,求出k的取值范圍;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案