6.在△ABC中,已知AC=2,BC=3,sinA=$\frac{12}{13}$,則sinB=$\frac{8}{13}$.

分析 由已知利用正弦定理即可計算求值得解.

解答 解:在△ABC中,∵AC=2,BC=3,sinA=$\frac{12}{13}$,
∴由正弦定理$\frac{a}{sinA}=\frac{sinB}$可得:$\frac{2}{sinB}=\frac{3}{\frac{12}{13}}$,
解得:sinB=$\frac{8}{13}$.
故答案為:$\frac{8}{13}$.

點(diǎn)評 本題主要考查了正弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知f(x)是定義在R上的偶函數(shù),令F(x)=(x-b)f(x-b)+2016,若b是a、c的等差中項,則F(a)+F(c)=4032.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)y=sin2x-2cosx的值域是[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.用列表法表示函數(shù)f(x),g(x)如下:
x123
 f(x)131
x123
g(x)321
則滿足f[g(x)]<g[f(x)]的x的值為( 。
A.1或3B.3或2C.2D.1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)$f(x)=\overrightarrow m•\overrightarrow n$,其中$\overrightarrow m=(sinωx+cosωx,\sqrt{3}cosωx)$,$\overrightarrow n=(cosωx-sinωx,2sinωx)(ω>0)$.若函數(shù)f(x)相鄰兩對稱軸的距離等于$\frac{π}{2}$.
(1)求ω的值;并求函數(shù)f(x)在區(qū)間$[{0,\frac{π}{2}}]$的值域;
(2)在△ABC中,a、b、c分別是角A、B、C的對邊,若$f(A)=1,a=\sqrt{3},b+c=3$(b>c),求邊b、c的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.sin45°cos105°+sin45°sin15°=( 。
A.0B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,a、b、c分別為內(nèi)角A、B、C對邊,且2cos(A+2C)+4sinBsinC=1.
(1)求A;
(2)若a=3$\sqrt{6}$,cos$\frac{B}{2}$=$\frac{2\sqrt{2}}{3}$,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為梯形,AB∥DC,∠ABC=90°,且PA=AB=BC=$\frac{1}{2}$DC=1,點(diǎn)E在線段PB上,且EB=$\frac{1}{2}$PE.試用向量法解決如下問題:
(1)求證:PD∥平面AEC.
(2)求銳二面角A-CE-P的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.把3個不同的球放入3個不同的盒子中,恰有一個空盒的概率是$\frac{2}{3}$.

查看答案和解析>>

同步練習(xí)冊答案