【題目】(1)如圖,以過原點的直線的傾斜角為參數(shù),求圓的參數(shù)方程;

(2)在平面直角坐標系中,已知直線的參數(shù)方程為,(為參數(shù)),曲線的參數(shù)方程為為參數(shù)),若相交于兩點,求的長.

【答案】(1)為參數(shù));

(2)

【解析】

(1)求得圓的半徑為,記圓心為,連接,則,根據(jù)圓的參數(shù)方程形式,即可求得圓的參數(shù)方程;

(2)求得直線的普通方程和曲線的普通方程為,聯(lián)立方程組,求得交點的坐標,即可求解的長.

(1)由題意,圓的方程,可得圓的半徑為,記圓心為,

連接,則,

所以,為參數(shù)).

所以圓的參數(shù)方程為為參數(shù)).

(2)由直線的參數(shù)方程為,(為參數(shù)),可得直線的普通方程

由曲線的參數(shù)方程為為參數(shù)),可得曲線的普通方程為,

聯(lián)立方程組,得,解得,

即點,所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】賀先生想向銀行貸款買輛新能源車,銀行可以貸給賀先生N,一年后需要一次性還1.02N.

(1)賀先生發(fā)現(xiàn)一個投資理財方案:每個月月初投資,共投資一年,每月的月收益率達到1%,于是賀先生決定貸款12,按投資方案投資,的值,使得賀先生用最終投所得的錢還清貸款后,還有120000的余額去旅游(精確到0.01);

(2)賀先生又發(fā)現(xiàn)一個投資方案:個月月初投資共投資一年,每月的月收益率達到1%,則賀先生應(yīng)貸款多少,使得用最終投資所得的錢還清后,還有120000的余額去旅游(精確到0.01).

(參考數(shù)據(jù),,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù), 是自然對數(shù)的底數(shù), ).

(Ⅰ)求證: ;

(Ⅱ)已知表示不超過的最大整數(shù),如, ,若對任意,都存在,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù),。

(Ⅰ)若曲線在點處的切線與直線平行,求的值;

(Ⅱ)若,問函數(shù)有無極值點?若有,請求出極值點的個數(shù);若沒有,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形.謝爾賓斯基三角形是一種分形,由波蘭數(shù)學(xué)家謝爾賓斯基1915年提出.具體操作是取一個實心三角形,沿三角形的三邊中點連線,將它分成4個小三角形,去掉中間的那一個小三角形后,對其余3個小三角形重復(fù)上述過程逐次得到各個圖形,如圖.

現(xiàn)在上述圖(3)中隨機選取一個點,則此點取自陰影部分的概率為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,

1)如果函數(shù)的單調(diào)遞減區(qū)間為,求函數(shù)的解析式;

2)在(1)的條件下,求函數(shù)的圖象在點處的切線方程;

3)若不等式恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的極值點的個數(shù);

(2)若方程上有且只有一個實根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的極小值;

2)設(shè)函數(shù),討論函數(shù)在上的零點的個數(shù);

3)若存在實數(shù),使得對任意,不等式恒成立,求正整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代有著輝煌的數(shù)學(xué)研究成果,其中的《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,有豐富多彩的內(nèi)容,是了解我國古代數(shù)學(xué)的重要文獻,這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時期,某中學(xué)擬從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,則所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案