將容量為n的樣本中的數(shù)據(jù)分成6組,繪制頻率分布直方圖.若第一組至第六組數(shù)據(jù)的頻率之比為2、3、4、6、4、1,且前三組數(shù)據(jù)的頻數(shù)之和等于36,則n等于
 
考點(diǎn):頻率分布直方圖
專(zhuān)題:概率與統(tǒng)計(jì)
分析:根據(jù)頻率分布直方圖中各頻率和為1,求出前3組數(shù)據(jù)的頻率和,再根據(jù)頻率、頻數(shù)與樣本容量的關(guān)系,求出n的值.
解答: 解:根據(jù)頻率分布直方圖中各頻率和為1,得;
前3組數(shù)據(jù)的頻率和為(2+3+4)×
1
2+3+4+6+4+1
=
9
20
,
頻數(shù)為36,
∴樣本容量是n=
36
9
20
=80.
故答案為:80.
點(diǎn)評(píng):本題考查了頻率分布直方圖的應(yīng)用問(wèn)題,也考查了頻率、頻數(shù)與樣本容量的關(guān)系,是基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某位同學(xué)進(jìn)行寒假社會(huì)實(shí)踐活動(dòng),為了對(duì)白天平均氣溫與某奶茶店的某種飲料銷(xiāo)量之間的關(guān)系進(jìn)行分析研究,他分別記錄了1月11日至1月15日的白天平均氣溫x(°C)與該小賣(mài)部的這種飲料銷(xiāo)量y(杯),得到如下數(shù)據(jù):
日    期1月11日1月12日1月13日1月14日1月15日
平均氣溫x(°C)91012118
銷(xiāo)量y(杯)2325302621
(Ⅰ)若先從這五組數(shù)據(jù)中抽出2組,求抽出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;
(Ⅱ)請(qǐng)根據(jù)所給五組數(shù)據(jù),求出y關(guān)于x的線性回歸方程cq=2q-1;
(Ⅲ)根據(jù)(Ⅱ)中所得的線性回歸方程,若天氣預(yù)報(bào)1月16日的白天平均氣溫7(°C),請(qǐng)預(yù)測(cè)該奶茶店這種飲料的銷(xiāo)量.
附:線性回歸方程
y
=
b
x+
a
中,
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
a
=
.
y
-
b
.
x
,其中
.
x
,
.
y
為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,為了測(cè)量某障礙物兩側(cè)A,B間的距離,給定下列四組數(shù)據(jù),不能確定A,B間距離的是(  )
A、α,a,b
B、α,β,a
C、a,b,γ
D、α,β,b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=2x2-2x-1的零點(diǎn)個(gè)數(shù)為( 。
A、0個(gè)B、1個(gè)C、2個(gè)D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩個(gè)競(jìng)賽隊(duì)都參加了10場(chǎng)比賽,比賽得分情況記錄如下(單位:分):
甲隊(duì):57,41,51,40,49,39,52,43,45,53
乙隊(duì):30,50,67,47,66,34,46,30,64,66
(1)根據(jù)得分情況記錄,請(qǐng)將莖葉圖補(bǔ)充完整,并求乙隊(duì)得分的中位數(shù);
(2)如果從甲、乙兩隊(duì)的10場(chǎng)得分中,各隨機(jī)抽取一場(chǎng)不小于50分的得分,求甲的得分大于乙的得分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的前n項(xiàng)和為Sn,Sn+an=-
1
2
n2-
3
2
n+1(n∈N*).
(1)設(shè)bn=an+n,證明:數(shù)列{bn}是等比數(shù)列;
(2)求數(shù)列{nbn}的前n項(xiàng)和Tn
(3)若cn=(
1
2
n-an,P=
2013
i=1
ci2+ci+1
ci3+ci
,求不超過(guò)P的最大整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x,y滿(mǎn)足約束條件
y+x-1≤0
y-3x-1≤0
y-x+1≥0
,則z=2x+y的最大值為( 。
A、2B、1C、-4D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(ωx-
π
4
)(ω>0,x∈R)的最小正周期為π.
(1)求f(
π
6
).
(2)在圖3給定的平面直角坐標(biāo)系中,畫(huà)出函數(shù)y=f(x)在區(qū)間[-
π
2
π
2
]上的圖象,并根據(jù)圖象寫(xiě)出其在(-
π
2
π
2
)上的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=|x|(x-a),a∈R是奇函數(shù),則f(2)的值為(  )
A、2B、4C、-2D、-4

查看答案和解析>>

同步練習(xí)冊(cè)答案