【題目】已知全集U=R,函數(shù)y= + 的定義域為A,函數(shù)y= 的定義域為B.
(1)求集合A、B.
(2)(UA)∪(UB).
【答案】
(1)解:由 x≥2
A={x|x≥2}
由 x≥﹣2且x≠3
B={x|x≥﹣2且x≠3}
(2)解:A∩B={x|x≥2且x≠3}
∴(CUA)∪(CUB)=CU(A∩B)={x|x<2或x=3}
【解析】(1)根據(jù)負數(shù)沒有平方根及分母不為零列出不等式組,求出不等式組的解集確定出集合A,B.(2)先利用(CUA)(CUB)=CU(A∩B),再結(jié)合所求出的集合利用交集的定義即可得到(CUA)∪(CUB).
【考點精析】本題主要考查了交、并、補集的混合運算和函數(shù)的定義域及其求法的相關(guān)知識點,需要掌握求集合的并、交、補是集合間的基本運算,運算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結(jié)合的思想方法;求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當(dāng)對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負)指數(shù)冪的底數(shù)不能為零才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|< )的最小正周期為2 π,最小值為﹣2,且當(dāng)x= 時,函數(shù)取得最大值4. (I)求函數(shù) f(x)的解析式;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)若當(dāng)x∈[ , ]時,方程f(x)=m+1有解,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“a≥3 ”是“直線l:2ax﹣y+2a2=0(a>0)與雙曲線C: ﹣ =1的右支無交點”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}滿足an+1+an=4n﹣3(n∈N*)
(Ⅰ)若{an}是等差數(shù)列,求其通項公式;
(Ⅱ)若{an}滿足a1=2,Sn為{an}的前n項和,求S2n+1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直三棱柱ABC﹣A1B1C1中,AB=5,AC=4,BC=3,AA1=4,點D在AB上.
(1)若D是AB中點,求證:AC1∥平面B1CD;
(2)當(dāng) = 時,求二面角B﹣CD﹣B1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}: , + , + + , + + + ,…,那么數(shù)列{bn}={ }的前n項和為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓: ,其左右焦點為 及,過點的直線交橢圓于, 兩點,線段的中點為, 的中垂線與軸和軸分別交于, 兩點,且、、構(gòu)成等差數(shù)列.
(1)求橢圓的方程;
(2)記的面積為, (為原點)的面積為.試問:是否存在直線,使得?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的一條對稱軸為,且最高點的縱坐標(biāo)是.
(1)求的最小值及此時函數(shù)的最小正周期、初相;
(2)在(1)的情況下,設(shè),求函數(shù)在上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)為偶函數(shù),當(dāng)x≥0時,f(x)=﹣(x﹣1)2+1,則滿足f[f(a)+ ]= 的實數(shù)a的個數(shù)為( )
A.2
B.4
C.6
D.8
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com