一圓形紙片的圓心為點O,點Q是圓內(nèi)異于O點的一定點,點A是圓周上一點.把紙片折疊使點A與Q重合,然后展平紙片,折痕與OA交于P點.當點A運動時點P的軌跡是( )
A.圓
B.橢圓
C.雙曲線
D.拋物線
【答案】分析:由線段AQ的垂直平分線,可得|AP|=|PQ|,而|OP|+|PA|=|OA|=R,可得|PO|+|PQ|=R定值>|OQ|,利用橢圓的定義可知:點P的軌跡是橢圓.
解答:解:如圖所示,
由題意可知:折痕l為線段AQ的垂直平分線,∴|AP|=|PQ|,
而|OP|+|PA|=|OA|=R,∴|PO|+|PQ|=R定值>|OQ|.
∴當點A運動時點P的軌跡是以點O,D為焦點,長軸長為R的橢圓.
故選B.
點評:熟練掌握橢圓的定義、線段的垂直平分線的性質(zhì)是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•昌平區(qū)一模)一圓形紙片的圓心為點O,點Q是圓內(nèi)異于O點的一定點,點A是圓周上一點.把紙片折疊使點A與Q重合,然后展平紙片,折痕與OA交于P點.當點A運動時點P的軌跡是( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆山東省濟寧市高二10月月考理科數(shù)學試卷(解析版) 題型:選擇題

一圓形紙片的圓心為點,點是圓內(nèi)異于點的一定點,點是圓周上一點.把紙片折疊使點重合,然后展平紙片,折痕與交于點.當點運動時點的軌跡是(   )

A.橢圓            B. 雙曲線              C. 拋物線      D.圓

 

查看答案和解析>>

科目:高中數(shù)學 來源:昌平區(qū)一模 題型:單選題

一圓形紙片的圓心為點O,點Q是圓內(nèi)異于O點的一定點,點A是圓周上一點.把紙片折疊使點A與Q重合,然后展平紙片,折痕與OA交于P點.當點A運動時點P的軌跡是( 。
A.圓B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年湖北省襄陽四中、荊州中學、龍泉中學聯(lián)考高二(下)期中數(shù)學試卷(文科)(解析版) 題型:選擇題

一圓形紙片的圓心為點O,點Q是圓內(nèi)異于O點的一定點,點A是圓周上一點.把紙片折疊使點A與Q重合,然后展平紙片,折痕與OA交于P點.當點A運動時點P的軌跡是( )
A.圓
B.橢圓
C.雙曲線
D.拋物線

查看答案和解析>>

同步練習冊答案