(2012•朝陽區(qū)一模)已知點集A={(x,y)|x2+y2-4x-8y+16≤0},B={(x,y)|y≥|x-m|+4,m是常數(shù)},點集A所表示的平面區(qū)域與點集B所表示的平面區(qū)域的邊界的交點為M,N.若點D(m,4)在點集A所表示的平面區(qū)域內(nèi)(不在邊界上),則△DMN的面積的最大值是( 。
分析:先確定點D在直線y=4上,集合A表示的平面區(qū)域是圖中圓O′的內(nèi)部,集合B表示的平面區(qū)域是圖中直角的內(nèi)部,由此可得結(jié)論.
解答:解:由題意,點D在直線y=4上,集合A表示的平面區(qū)域是圖中圓O′的內(nèi)部,集合B表示的平面區(qū)域是圖中直角的內(nèi)部
當D運動到O′時,△DMN的面積的最大值,此時三角形是一個直角邊為2的等腰直角三角形,
所以面積為2
故選B.
點評:本題考查圖形面積的計算,考查平面區(qū)域的確定,正確確定平面區(qū)域是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•朝陽區(qū)一模)某次有1000人參加的數(shù)學(xué)摸底考試,其成績的頻率分布直方圖如圖所示,規(guī)定85分及其以上為優(yōu)秀.
(Ⅰ)下表是這次考試成績的頻數(shù)分布表,求正整數(shù)a,b的值;
區(qū)間 [75,80) [80,85) [85,90) [90,95) [95,100]
人數(shù) 50 a 350 300 b
(Ⅱ)現(xiàn)在要用分層抽樣的方法從這1000人中抽取40人的成績進行分析,求其中成績?yōu)閮?yōu)秀的學(xué)生人數(shù);
(Ⅲ)在(Ⅱ)中抽取的40名學(xué)生中,要隨機選取2名學(xué)生參加座談會,記“其中成績?yōu)閮?yōu)秀的人數(shù)”為X,求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•朝陽區(qū)一模)函數(shù)f(x)是定義在R上的偶函數(shù),且對任意的x∈R,都有f(x+2)=f(x).當0≤x≤1時,f(x)=x2.若直線y=x+a與函數(shù)y=f(x)的圖象有兩個不同的公共點,則實數(shù)a的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•朝陽區(qū)一模)已知函數(shù)f(x)=
(
1
2
)
x
+
3
4
,
x≥2
log2x,0<x<2
若函數(shù)g(x)=f(x)-k有兩個不同的零點,則實數(shù)k的取值范圍是
3
4
,1)
3
4
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•朝陽區(qū)一模)某企業(yè)員工500人參加“學(xué)雷鋒”志愿活動,按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50],得到的頻率分布直方圖如圖所示.
(Ⅰ)下表是年齡的頻數(shù)分布表,求正整數(shù)a,b的值;
區(qū)間 [25,30) [30,35) [35,40) [40,45) [45,50]
人數(shù) 50 50 a 150 b
(Ⅱ)現(xiàn)在要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,年齡在第1,2,3組的人數(shù)分別是多少?
(Ⅲ)在(Ⅱ)的前提下,從這6人中隨機抽取2人參加社區(qū)宣傳交流活動,求至少有1人年齡在第3組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•朝陽區(qū)一模)復(fù)數(shù)
10i
1-2i
=( 。

查看答案和解析>>

同步練習冊答案