設(shè)△ABC是等腰直角三角形,∠ABC=90°,則以A,B為焦點且過點C的雙曲線的離心率為

[  ]
A.

B.

C.

D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直三棱柱ABC-A1B1C1中,△ABC是等腰直角三角形,∠BAC=90°,且AB=AA1,D、E、F分別是B1A、CC1、BC的中點.現(xiàn)設(shè)A1A=2a
(1)求證:DE∥平面ABC;
(2)求證:B1F⊥平面AEF;
(3)求二面角B1-AE-F的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P:△ABC是等腰三角形;q:△ABC的直角三角形,則“p且q”形式的復(fù)合命題是
△ABC是等腰直角三角形
△ABC是等腰直角三角形

△ABC是等腰直角三角形
△ABC是等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•普陀區(qū)一模)給出問題:已知△ABC滿足a•cosA=b•cosB,試判斷△ABC的形狀,某學(xué)生的解答如下:
(i)a•
b2+c2-a2
2bc
=b•
a2+c2-b2
2ac
?a2(b2+c2-a2)=b2(a2+c2-b2)?(a2-b2)•c2=(a2-b2)(a2+b2)?c2=a2+b2
故△ABC是直角三角形.
(ii)設(shè)△ABC外接圓半徑為R,由正弦定理可得,原式等價于2RsinAcosA=2RsinBcosB?sin2A=cos2B?A=B
故△ABC是等腰三角形.
綜上可知,△ABC是等腰直角三角形.
請問:該學(xué)生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認(rèn)為本題正確的結(jié)果
等腰或直角三角形
等腰或直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007-2008學(xué)年北京市宣武區(qū)高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,已知直三棱柱ABC-A1B1C1中,△ABC是等腰直角三角形,∠BAC=90°,且AB=AA1,D、E、F分別是B1A、CC1、BC的中點.現(xiàn)設(shè)A1A=2a
(1)求證:DE∥平面ABC;
(2)求證:B1F⊥平面AEF;
(3)求二面角B1-AE-F的正切值.

查看答案和解析>>

同步練習(xí)冊答案