精英家教網(wǎng)如圖,已知直三棱柱ABC-A1B1C1中,△ABC是等腰直角三角形,∠BAC=90°,且AB=AA1,D、E、F分別是B1A、CC1、BC的中點(diǎn).現(xiàn)設(shè)A1A=2a
(1)求證:DE∥平面ABC;
(2)求證:B1F⊥平面AEF;
(3)求二面角B1-AE-F的正切值.
分析:建立空間直角坐標(biāo)系,求出相關(guān)向量
(I)要證:DE∥平面ABC,只需證明向量DE與平面ABC的法向量數(shù)量積=0即可;
(II)要證:B1F⊥平面AEF,只需證明
B1F
EF
=(-2)×2+(-2)+(-4)×(-2)
=0,
B1F•
AF
=(-2)×2+2×2+(-4)
=0即可;
(III)求二面角B1-AE-F的余弦值,只需求出平面B1AE的法向量為
n
=(x,y,z)
,
平面AEF的法向量為
 
B1F
=(-2,2,-4)
,利用數(shù)量積確定二面角的余弦值.
也可以用幾何法證明:
(I)要證DE∥平面ABC,只需證明DE平行平面ABC內(nèi)的直線DG(設(shè)G是AB的中點(diǎn),連接DG,);
(II)求證B1F⊥平面AEF,只需證明B1F垂直平面AEF內(nèi)的兩條相交直線AF、EF即可;
(III)過F做FM⊥AE于點(diǎn)M,連接B1M,說明∠B1MF為二面角B1-AE-F的平面角,然后求二面角B1-AE-F的余弦值.
解答:精英家教網(wǎng)解:方法1:如圖建立空間直角坐標(biāo)系O-xyz,令A(yù)B=AA1=4,
則A(0,0,0),E(0,4,2),F(xiàn)(2,2,0),B(4,0,0),
B1(4,0,4),D(2,0,2),(2分)
(I)
DE
=(-2,4,0),面ABC的法向量為
OA1
=(0,0,4),
DE
OA1
=0
,DE?平面ABC,
∴DE∥平面ABC.(4分)
(II)
B1F
=(-2,2,-4)
,
EF
=(2,-2,-2)

B1F
EF
=(-2)×2+(-2)+(-4)×(-2)
=0
B1F•
AF
=(-2)×2+2×2+(-4)
=0(6分)
B1F
AF
,∴B1F⊥AF
∵AF∩FE=F,∴B1F⊥平面AEF(8分)
(III)平面AEF的法向量為
 
B1F
=(-2,2,-4)
,設(shè)平面B1AE的法向量為
n
=(x,y,z)
,
n
AE
=0
n
B1A
=0
,即
2y+z=0
x+z=0
(10分)
令x=2,則Z=-2,y=1,∴
n
=(2,1,-2)

cos(
n
,
B1F
)=
n
B1F
|
n
|•|
B1F
|
=
6
9
×
24
=
6
6

∴二面角B1-AE-F的余弦值為
6
6
(12分)
方法2:(I)方法i:設(shè)G是AB的中點(diǎn),連接DG,
精英家教網(wǎng)則DG平行且等于EC,(2分)
所以四邊形DECG是平行四邊形,所以DE∥GC,
從而DE∥平面ABC.(4分)
方法ii:連接A1B、A1E,并延長A1E交AC的延長線
于點(diǎn)P,連接BP.由E為C1C的中點(diǎn),A1C1∥CP,
可證A1E=EP,(2分)
∵D、E是A1B、A1P的中點(diǎn),∴DE∥BP,
又∵BP?平面ABC,DE?平面ABC,∴DE∥平面ABC(4分)
(II)∵△ABC為等腰直角三角形,F(xiàn)為BC的中點(diǎn),
∴BC⊥AF,又∵B1B⊥平面ABC,可證B1F⊥AF,(6分)
設(shè)AB=AA1=2,則 B1F=
6
,EF=
3
,B1E=3

∴B1F⊥EF,∴B1F⊥平面AEF;(8分)
(III)過F做FM⊥AE于點(diǎn)M,連接B1M,
精英家教網(wǎng)∵B1F⊥平面AEF,由三垂線定理可證B1M⊥AE,
∴∠B1MF為二面角B1-AE-F的平面角,
C1C⊥平面ABC,AF⊥FC,可證EF⊥AF,
在Rt△AEF中,可求 FM=
10
5
,(10分)
在Rt△B1FM中,∠B1FM=90°,∴cos∠B1MF=
6
6

∴二面角B1-AE-F的余弦值為
6
6
(12分)
點(diǎn)評(píng):本題考查直線與平面平行的判定,二面角的求法,直線與平面的垂直的判定,考查邏輯思維能力 空間想象能力,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4.E、F分別是棱CC1、AB中點(diǎn).
(Ⅰ)求證:CF⊥BB1;
(Ⅱ)求四棱錐A-ECBB1的體積;
(Ⅲ)判斷直線CF和平面AEB1的位置關(guān)系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直三棱柱ABC-A1B1C1,∠ACB=90°,E是棱CC1上動(dòng)點(diǎn),F(xiàn)是AB中點(diǎn),AC=BC=2,AA1=4.
(1)求證:CF⊥平面ABB1;
(2)當(dāng)E是棱CC1中點(diǎn)時(shí),求證:CF∥平面AEB1;
(3)在棱CC1上是否存在點(diǎn)E,使得二面角A-EB1-B的大小是45°,若存在,求CE
的長,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4,E、F分別是棱CC1、AB中點(diǎn).
(1)判斷直線CF和平面AEB1的位置關(guān)系,并加以證明;
(2)求四棱錐A-ECBB1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知直三棱柱ABC-A1B1C1的側(cè)棱長為2,底面△ABC是等腰直角三角形,且∠ACB=90°,AC=2,D是A A1的中點(diǎn).
(Ⅰ)求異面直線AB和C1D所成的角(用反三角函數(shù)表示);
(Ⅱ)若E為AB上一點(diǎn),試確定點(diǎn)E在AB上的位置,使得A1E⊥C1D;
(Ⅲ)在(Ⅱ)的條件下,求點(diǎn)D到平面B1C1E的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•莒縣模擬)如圖,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4.E、F分別是棱CCl、AB中點(diǎn).
(I)求證:CF⊥BB1;
(Ⅱ)求四棱錐A-ECBB1的體積;
(Ⅲ)證明:直線CF∥平面AEBl

查看答案和解析>>

同步練習(xí)冊(cè)答案