【題目】如圖所示,四棱錐中,底面,,為中點.
(1)試在上確定一點,使得平面;
(2)點在滿足(1)的條件下,求直線與平面所成角的正弦值.
【答案】(1). (2).
【解析】
【試題分析】(1)先確定點的位置為等分點,再運用線面平行的判定定理進行證明平面;(2)借助(1)的結(jié)論,及線面角的定義構(gòu)造三角形找出直線與平面所成角,再通過解直角三角形求出其正弦值:
解:(1)證明: 平面PAD.過M作交PA于E,連接DE. 因為,所以,又,故,且,即為平行四邊形,則 ,又平面PAD, 平面PAD, 平面;
(2)解:因為,所以直線MN與平面PAB所成角等于直線DE與平面PAB所成角
底面ABCD,所以 ,又因為,所以底面PAB , 即為直線DE與平面PAB所成角.因為,所以,所以直線MN與平面PAB所成角的正弦值為。
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)f(x)=x2-(2m+1)x+m.
(1)若方程f(x)=0有兩個不等的實根x1,x2,且-1<x1<0<x2<1,求m的取值范圍;
(2)若對任意的x∈[1,2],≤2恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)判斷函數(shù)零點的個數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)討論的單調(diào)性;
(Ⅱ)當時,證明:;
(Ⅲ)求證:對任意正整數(shù),都有 (其中為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知(e為目然對數(shù)的底數(shù)).
(1)設函數(shù),求函數(shù)的最小值;
(2)若函數(shù)在上為增函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,,AA1=4,點D是AB的中點.
(1)求證:AC ⊥BC1;
(2)求證:AC 1 // 平面CDB1;
(3)(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直三棱柱中的底面為等腰直角三角形,,點分別是邊,上動點,若直線平面,點為線段的中點,則點的軌跡為
A. 雙曲線的一支一部分 B. 圓弧一部分
C. 線段去掉一個端點 D. 拋物線的一部分
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com